1

//;v

F. 3y7

NASA Contractor Report 189606

Advanced Transport Operating System (ATOPS)
Control Display Unit Software Description

Christopher J. Slominski
Mark A. Parks

Kelly R. Debure

William J. Heaphy

Computer Sciences Corporation
Hampton, Virginia

Prepared For

Langley Research Center
under Contract NAS1-19038
January 1992

NASA

National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23665-5225

(HIASA-CR-1898&05) ADVANCED TRANSPORT N92-24689

JPERATING SYSTEM (ATOPS) CONTROL DISPLAY

UMIT SOFTWARE OJFSCRIPTION (Computer

sciances Corp.) 347 p CSCL 098 unclas
G3/06 00858562

6.3
6.3.

6.

.2

2.

.3

3.

.2

3

1

.2

3

ROUTE TRANSLATION AND PATH DEFINITION
CREATE BUF . \tiiiiiieneennnnannnnnnnnnnnn..
DEMODE + vt vttt eeeeee e ae et e e e

= -
PATHDE ittt ettt ettt et e e e
RTA TIMES ittt ittt ittt ettt e
R vttt tee ittt ettt e et e e
TRIM WPTS ittt ittt ettt eeeeeeee,

1 2

EXECUTE t ittt eteeiiae e,
HOLD_SET .\ 'ittittin ittt iieiinenneennnn..
REJECT \ttttneetine s eeaaeeeniiinennnnnannn.
THE FLIGHT PLANNING PAGESvvveiunnennn....
THE DEPARTURE/ARRIVAL PAGE
DA _INPUT ttvttttnieeeneeeneenennnannn.
DEPARR vttt tiie s e ieie e eieae e,
INDX_INPUT . \vttinntetnneennnn e,
ITEM_ADDR o tttttiietieneiieeeieennnnn..
ITEM COUNT \\vtvnninetnneeninee e,
MODIFY &\ \tttietitttiee e enneennnnennnennn,.
MOD_ROUTE +tvttntineeeneennnnnnnennnnnn..,
PAGE_COUNT +\iviinitneeiaeennnnnnneennnennn.,
REFRESH DA .t \niinnitnennnnnnnennnennnnn..
SET SIDLINE t.uuivnniennennnnnnnnennnennnn..

DIRECT tuevtiemttt e tae e teeie e,
INTC MGR « ettt ittt et iieee e iiaeennnn.
INTERCEPT \vivtinetinnneeiiienennnnennnn..,
THE HOLD PAGE'iiiiinnnnnnnennnnnnnnnn..
GET ETA ittt et eteeteneiineenannn..

HOLD INPUT . \ttitiitne i iieneeineneannn.
HLD MGR ...ttt iiiennnn., Ceee
D
INDX ...iiniiinnnnn.. s ettt
e -
POINTS .ttt ittt it ieeen e

.3.4 THE LEGS PAGE .« vtvvttitimne it innnnnnans 153
ADD WPT vt iteneeneetoaaenenenannnennennn, 157
N 25 5 158
BOUNDS 4ot v evtveennnenosnonasssnnnasnsensones 159
DSP_WPTS tevviernnenenoranoeannensnnannnnnnn 160
HLID END 4 vvvectevennennnnneeaneeeeennnnnnns 162
1502 T8 163
HLD POS tvttneeenenesteenenaenonnennnnnnns 164
INBOUND 4t vvveeeemniennneeonnnneeesnnnns 165
INTC END tvtinnenannanansasennnannennnns 166
KILL WPT 4tvttivmnenmnnnasuanennnnnennnennns 167
1 0] €< 168
LEG END tvtiiinnetenentanenennnnenennennnnn 170
LEG MGR sttt viineeneenananeenanenennennenn 171
NEWCTR & v vvvvnesnnnneeennneoeanneeeeennnnnas 172
NEW ENTRY . \iivitennnranenaneananennnnennenn 173
NEXT WPT &iititininenrennneneanananennennenn 174
NMBRS &t veeneeeaneerenneeeennoeesnnnnnnes 175
PAD NAME . ..iuitininennonnnnennnnnennonneennns 176
PROG NUM .t itiitiitintiiinaenneanennenneennns 177
SET PG veventnaenneansneanenenennennenns 178
3= U 179
STEPS v evveevvnneesnnaneceanneenannsseeennns 180
WPNAME . .ttiiietiennnttennneasnnnneeennennas 181
WPT ADDR & itiviniiinnieeneennnnnnneeennas 182
WPT DATA . tvnvitennennnneeenennrnsennsnnennas 183

.3.5 THE LEGS TIME PAGEtitininneinnnneennnnnas 185
DSP TIME ..uevuinnennnonnnennseanonnnneennens 189
ECHO TIME ..ttinetinnnnnnennnennennnneennnas 190
LEG TIME tititttinnnnernnnnneennneneennnnnens 191
TIME IN tiitetnnnneeennnetecaneneeennnnnnss 192

.3.6 THE ROUTE PAGE . ..titttiniiiinnnnnnnnnnnannnnnn 193
ACT EXIT tttiitiintnnnnnneennananaeennnenns 199
ATIRPORT .ttt ttinininninneeeeensnnannnnnns 200
12520 00 - G 201
CLEAN PPT o tiiittiitinnernnncnnecnnnnennns 202
COMPANY &ttt iie ittt et iaeeeanennnas 203
DATA IN ittt ittt ininenneeanseennnns 204
DEL TN ttuvevntineancanennennonsennenneenns 206
DEL RTE ettt tansonneennseennns 207
DSC CHECK .+ ivitiiiniiniennennennonnennnnnn 208
2103 [R 209
ENTRY WPT o it iieinniitennennennannennnnnnnns 210
EXIT o iivteiiiivnnnnnnnn e e 211
EXIT WPT o iiiitennnnrennnneneennnsoennnnnns 212
FIND PPT o iiiitiennneennnnnnncenannnnnennnns 213
FIND RTE 4ttt tinernnnnnennnacnnneanneeanns 214
€3 70] = 215

INIT PLANttt iiiteennennnns 217

. 3.

9

INTC WPTS ot tievnenrnennannnneraneneneenenns 218
INT TEG tovvenenenaronocennensnanenanenennns 220
0 10 75 N 222
MAKE WPT . .tvuenennrnenenenneneneanenennenss 223
MERGE . ittt ttteeeteeeeennnoenneeeenenennens 224
NEW POS «ovennvmneennnennneennneennnennnenn. 225
OPEN & it ettt eenseoeossosaassnsnseseoeneensnses 226
ORG RWY . ttitnnnienencnnneanannennenannnnn 227
PROG SCR vvvvenieienannnneanennnnnennenns 228
REMOVE & ittt it i et eaonenaosensosnsssenesneees 229
1230104 - R 230
RTE ID tvveevnnnenenensneaneneneneananennnn. 231
RTE INTC tuvevrnnnnnnnenononnenansnnnnnnnnn, 232
RTE WPT o tvtvnenennnnenanensnenenannnnanass 234
SEQUENCE it vtevrrerneeneonnonssnnnnennennss 235
SLASH ittt ittt s eeoaonooessosasconnsonsosens 2306

0 i 1 9 237
TYPE WPT .+ tvvtentennnnennenasnenaeennnnnnns 238
16)2357 X0 7 239
WAYPOINT vt ittt teeeenenenenenesnenonenennnes 241

) = 5 243
D0 420 1< T 245
THE ROUTE INDEX PAGE .+ vvvtvtnreenenenenennans 247
=3\ 251
RTENDX &t ot e tenenesnenenenenenneneneasnsnss 252
THE INITIALIZATION AND REFERENCE PAGES 253
THE INIT/REF INDEX PAGE v vvtiviennnnennennenss 255
INITREFE i ittt ittt it teeeneeeeneneneenennnenens 259
THE SYSTEM IDENTIFICATION PAGE .+ evvveennnennnn. 261
50 2} s 265
THE REFERENCE NAVIGATION DATA PAGEeveeen. 267
AIR INPUT vttt ittt teneestneneneneeenenennnns 271
AIR PAGE 4 ittt it titeeteseesnseeneneneneennenns 272
CLEBR ENTRY sttt vt tttnneeneneenenensenenenanas 273
LIST TINPUT v vittneneennennnennsennennnnsnns 274
LIST PAGE t.tviniitintenninneonnneneeenncnnnns 275
MAGVY vttt iiiienennn et ettt e e e, 276
NAME LEN . ..tiuntininnennennnennncneeanaenanenens 277
NAME PTR & tvviinttinnnnteenaneeenneeeennanesas 278
NAV INPUT & titttiitentennnennnenneanseannnsns 279
17N 280
PROCESS AIRWAY .+ ittt it tienenenennonenenenenss 281
PROCESS ARP .t .ttiinnetinnneennanennnnnseenns 282
PROCESS GRP titvtttininiinnncnneennennneens 283
PROCESS NAV L.ttt iiiiiiiinneeneennneennaens 284
PROCESS RWY . ..iiitiiitiiitinnnennennnnnnnanns 285
2800 20 23 05 ; 286
SET CENTER . .vtvininiiininennnnnnneenennns 287
SET LIST 4 vttt teteeeeenneneeneceeneeeennnnens 288

SUBNAV INPUT . .\titininnnninennnnnnonennnnennn 289

.4 THE INITIAL POSITION PAGE it iii ittt itneeeannn 291
INITPOS v v oo oo ssesenseneneneneneneoenenenensas 295
INITUP &t et eenesnsneneneneseseneeeneaenenens 296
STRIPR vt v e eveeesosenennenenosseenennenessnenas 297
.5 THE EPR LIMIT PAGE .+ttt titetetneennneneeannnnns 299
EPRLIM & ittt it oeteenenensoeneneneseneneneenns 303
.6 THE PROGRESS PAGE .ttt it tetenennnenenseennnas 305
ACTION ottt ettt e e senseneneeeeaeenneenans 311
PROGRESS 4 ittt vt reeeeeenseneenenoneennonnnanns 312
.7 THE PERFORMANCE INITIALIZATION PAGE 315
PEINTI T v it ee ettt teaeeeeeneseeeenenenenenenenan 319
PEINP et ee et o teeeeeenensenaenaneneneennenennnas 320
1210103 P 7 0 324
.8 THE STATUS PAGE sttt vttt ittt teeeenennnenonennnen 325
STATPG e e oo v v e oo eesnenseseseneoneneenoenesenas 329
STNDRD INP vt vttt teetesteeenenseenenenaeensnnns 330
.9 THE APPROACH REFERENCE PAGE .ttt vitinnnenennnnn 331
F N 320 232 335
VREFLU vt ettt oot eeeesensesoeseneeeeneeeeenns 336
.10 THE TAKEOFF REF PAGE it vttt teeinnnnennennenenns 337
120) 30 343
0 200) 20 20 § 1 = 346
PROC DEL &t ivtiiitiiitinnennetannnnneennneenns 350
MANUBL &t vt et temeesee s eeenenenenneeaeanneeans 351
INTRP ittt sttt teeeneeneneeneneneeeneennennnnns 352
2 =3 = o A 353
TOSTBP 4ottt ts et e tssesnsennnssnseneoenenenenenss 354
.11 THE GPSS PAGE .+ ittt it inteeeereneenencenennnnenes 355
() 23 = ¢ 359
SHOW GPS v iiiiiiii it iie it iineneeneennennas 360
.0 THE PHASE OF FLIGHT PAGES i v ittt iteeteteennnns 361
CLIMB it it ittt it eseoonseesoesensonesnoensesennas 369
(03210 5 <3 ' 370
DESCENT &ttt ettt tetseeesseeeeeeseeeneenennsns 371
FLT TYPE & iiuttinttinnnenneenncanneennneens 372
FLT TYPE INP ...t iintiiiiniinnennnennnens 374
FIND TOD & tvitvnntnnceneennneennennnsennnnns 377
03 1 e =] e P 378
SPEEDB ottt eee et e e 379
PROG LN e e ettt it e e e e 381
RTA LNB ittt it ittt eiiiint e nnnnns 382
RTA LNO ittt ittt ittt ettt ettt seennnneenas 383

123N 0 1 P 384

9.

THE FIX PAGE .. .vvtenenrnnnnenenneeonenennennnns. 385
FIX INFO tttiennnntenennteneaneaneneneenenn, 391
OUT_RAD e 393
FIX INP titnnennennetananaenenenenenennnennn. 394
FUNC INP FIX ttvevnnnnenennenenenenenennnnnnn. 395
DATA INP FIX tutinininnnenennnnennnennenennnnss 397
1) 5 P 2 P 399
CH FIX PG tvieeveninitinnennennrnenenenenenn. 400
0 N 401
COMP BABRAD . .tvvierinnnrnnennenneneannennennn. 402
FIND LEG AB ttvttitnnaneannnnnenraennnnenennss 403
UNITVEC & i teeeininninenen i inennenenenenenn. 404
120 405
FIX ERAD 1 tittnrnnnnnenennnnnnensnenenenenenns 406
AB TP LL tvvvvennnnnnnnnenannenenenenenenensns 407
COMP_RAD ..itvitiiniin et iiienennninnnnann. 408
FIND LEG RAD . tvntntntennnennennnonenennenenn 409
F ANG(X, Y, ANG) ..uininininiiennenenenenenen. 410
COMP ANG . .vviivrnnernneennsnnannanennnennnens 411
POS_INFO . ttiiitniieeennnnnaennnenneeenenns 412
COMP_IP DTG &tvvieneeennnennnennenencnennnss 413
FIX DISP tiittvtinrenntenenneneninoneaneannnss 414

Appendix A PATH DEFINITION COMPUTATIONS 415

LIST OF FIGURES

OCE-JOUMDWNRPOR,ROOIOOUBWNFRFOORFROO

CWYWowomdJddJddJdNdJdJdd NS Yoooaooaooaoaoaanabdwihbhek

P ONR O

=
NP O

The Control Display Unitt 11
CDU Untranslated Key Codes ...ttt nnnnn 14
CDU Translated Key COdES ... iviiinennreenneennn 15
CDU Output COdes ..vevcitiitiniiennenitnnnnennnnans 21
Error Codes & MESSAgeS ... iiiiietneeenernennnnns 32
The Departures & Arrivals Index Page 111
The Arrivals Pageceeeritetrnnneeeecennnnas 113
The Direct/Intercept Pageciiieiiineeenans 129
The Legs Hold Pagecconiciiiinieennacenns 137
The HOld PAge .. ttenieiieeennteeonnenoenneenns 139
The LEeQgS PATE « vt tveeronenacsssstonsanessnnssssse 155
The Legs Time Pagevtiieennnneneennnennns 187
The Route Page (#1) ..ttt eennnnnneneenns 195
The Route Page (#2) ...ttt nnnnann 197
The Route IndexXx PAge ...cuviiieetononeesnneenans 249
The Init/Ref INdeX PAGE .. vintvinnneeneseenens 257
The System Identification Page 263
The Navigation Data Pageeeeiiiiinennnnann 269
The Initial POSition PAge ve i crenconnnn 293
The EPR LiMit PAge .t iiiiieiiiiinnnennneeansenn 301
The Progress Page (#1)c.ciuiiiiiiienian... 307
The Progress Page (#2) ..., 309
The Performance Initialization Page 317
The SLAtuS PAgE ..ttt ittennnonsnnnnnssnsssenas 327
The Approach Pagecceeiiiiiniineennanas 333
The Takeoff Page (#1) ...ttt innnernnns 339
The Takeoff Page (#2) ittt iiiineinnenenneensan 341
The GPSS selecCt Pageottt nnrsnnssnnns 357
The Climb PAgettt ennnonennnnnnneens 363
The CruisSe PAgeiiitittiocnrtoettasstacenssans 365
The Descent Pagettt eeen oo eneeneanan 367
The FixX PAge .. eut ittt oriosessnnnaans 387
Nav Display Fix Examplecciiiiiiiinnnn. 389

Section 1.0 INTRODUCTION TO CDU SOFTWARE

The following sections of this document describe the
CDU software which runs on the Flight Management/Flight
Controls VAX computer on-board the TSRV. All the software,
with the exception of two small modules, is built into the
flight management background process SLOW. The remaining
modules, CDUFST and KEYBRD, serve as the CDU’s foreground
interface and are built into the processes FMFAST and HDL
respectively. CDU applications running in the background
means that no definitive timing exists for the repetitive
scheduling of CDU operations and the software may be inter-
rupted at any point by time critical foreground software.
Data structures shared by both background and foreground
must be synchronized through software flags.

Two important functions of the CDU software include
the management of the CDU interactive display and the
flight management functions performed in assisting the
flight crew in choosing and following a flight plan.
Operations performed with CDU software affects the air-
crafts guidance, navigation, and display software. The
actual CDU hardware is a Lear-Siegler unit having 14
display lines of 24 character width. There are also
5 programmable display lights on the face of the key-
board. Besides alphanumeric data keys, there are six line
select keys (LSK) on each side of the display area. See
figure 1.0.

gaet R IINTIONALLY BLASE PRECEDING PAGE BLANK NOT FILMED

PR e os

LINE
SELECT 1
KEYS

FUNCTION AND

-11-

=
=
=] | LIne
=
=
=

MOOE KEYS

ANNUNCIATORS

\—‘(

pact_ W@ inENTIONALLY BLAMK

o1/
E

p SELECT
KEYS
J
/ BRIGHT
RT ADJUST
ANNUNCIATORS

(figure 1.0)

PRECEDING PAGE BLANK NOT FILMED

13

Section 2.0 CDU INPUT DATA

Input to the CDU comes from two sources. Most CDU
data is received from flight crew entries on the Lear-
Siegler keyboard, however data input for the CDU software
may also come from the data-link. Information on data
link I/0 is contained in the CDU data-link description
(section 5).

Keyboard entries received by CDU software are of two
types; function and buffered data. Function entries consist
of one key code (one byte of data) while data entries have
one to 16 bytes of ASCII data followed by a termination key
code. The termination code is from either a line select key
or the sampled scratch pad code, 'FF’ hex. The key codes
sent by the Lear-Siegler unit are non-standard character
codes which must be translated into usable data for CDU
software. The module KEYBRD performs the translation upon
receiving the data in the I/0 handler process (HDL). The
alphanumeric codes are mapped into their ASCII counterparts
for ease of use in the software. Fiqures 2.0 and 2.1 show
the codes both before and after the translation process.

Once the code translation is complete the data is stored
in the global input buffer, ENTRY. The first byte of ENTRY is
set to the key code count. All function entries will have
the count byte set to one, data entries will be from two to
seventeen. Note that when the CDU applications have finished
processing the keyboard input, the count byte is cleared.

Data entry 1is initiated by any alphanumeric keystroke.

At that time the CDU will automatically clear all of line
#14 (CDU data entry line), then echo the character at the
start of line #14 (the CDU is now in data entry mode).
During data entry mode any line #14 update sent to the CDU
from the host computer will be ignored. When a function key
is selected during data entry mode the function code will be
immediately sent to the host, with no effect on the current
scratch pad entry. The CLR function will not be passed to
the host computer unless the scratch pad is inactive. When
data entry is in progress, the CLR will be used by the CDU
to either delete one or all characters from the scratch pad
depending on duration of selection. When all characters are
deleted from the scratch pad the CDU will exit data entry
mode and allow line #14 updates. When data entry is
completed by a LSK selection the scratch pad line is cleared
and data entry mode is canceled.

Data buffering by the CDU may be disabled by the host
software. When this situation arises the CDU scratch pad
will be cleared and disabled. Neither direct key entry
nor host software scratch pad programming will place the CDU
in data entry mode. Note that line #14 of the display
screen will always be available as a display line when data
buffering is disabled. All key entries, including line select
keys, will be sent immediately as single key function
entries (count = 1). This process will continue until the
host computer commands the re-enabling of data buffering.

PAOE_/SL IntenTionalLy BLA PRECEDING PAGE BLANK NGT FILMED

-14_.

Figure 2.0

LSK
LSK
LSK
LSK

LSK
LSK
LSK
LSK

LSK
LSK
LSK
LSK

L2
L1
R1
R2

L4
L3
R3
R4

N

L6
L5
R5
R6
3
6
9
+/-

NEXT PAGE

FIX

DIR INTC

INIT

NOTE

REF

(1) :

CDU UNTRANSLATED KEY CODES

CODE
O0OH
01H
02H
03H
04H
05H
06H
07H
08H
09H
0AH
0BH
0CH
ODH
OEH
OFH
10H
11H
12H
13H
14H
15H
16H
17H
18H
19H
1AH
1BH
1CH
1DH
1EH
1FH

KEY CODE KEY CODE
K 20H 0 40H
P 21H T 41H
U 22H Y 42H
z 23H 43H
F 24H J 44H
A 25H E 4SH
LEGS 26H EXEC 46H
RTE 274 47H
L 28H CLR (1) 48H
Q 29H PREV PAGE 49H
A\ 2AH NI LIMIT 4AH
(BLANK) 2BH 4BH
G 2CH 4CH
B 2DH 4DH
DEP ARR 2EH 4EH
CLB 2FH 4FH
M 30H
R 31H
W 32H
DEL 33H
H 34H
C 35H
HOLD 36H
CRZ 37H
N 38H
S 39H
X 3AH
/ 3BH
I 3CH
D 3DH
PROG 3EH
DES 3FH CLR (1) C8H

CLR KEY CODE FOR KEY ENGAGED

< 1/2 SEC

48H, > 1/2 SEC C8H

Figure 2.1 CDU TRANSLATED KEY CODES

HEX VALUE KEY

00

01-0C line select 1-12
0D-0F

10 INIT REF
11 DIR INTC
12 N1l LIMIT
13 RTE

14 LEGS

15 FIX

16 CLB

17 DEP ARR
18 CRZ

19 HOLD

1A DES

1B PROG

1C PREV PAGE
1D NEXT PAGE
1E EXEC

1F

20 (blank)
21 short CLR
22 long CLR
23 DEL

24-2C

2D -

2E .

2F /

30-39 0-9

3A-3F

40

41-4F A-O

50-5A P-2
5B-5F

60-FE
FF scratch pad terminater

.17

Section 3.0 CDU OUTPUT DATA

The CDU display screen consists of 14 lines of 24
characters each. The top and bottom lines are referred to
as the title and scratch pad lines respectively. The
title line identifies the active CDU display page and the
scratch pad line is alternately used as a data entry and
warning display line. The lines in between are identified
as line #1 through #12. Typically odd numbered lines are
used as label lines where text is written in small font.

The even numbered lines except #12 are normally used as
data entry and display lines. Line #12 often has special
control tags such as "ERASE>". The six line select keys
on each side of the display correspond to label/data line
pairs. For example the top LSK is positioned between
lines #1 and #2.

The data transmission to the Lear-Siegler Control
Display Units is a variable length byte stream consisting of
character codes (OOH - 7FH) and special functions (80H -
FFH) . The visible representation for each character code is
shown in figure 4, page 26 of the Design Requirement Speci-
fication for the CDU. Only a subset of the existing symbols
is used by CDU software. Figure 3.0 outlines the symbols
and their hex codes used for the NASA CDU software. The
minimum amount of data that can be modified in one update is
one 24 character line on the display. However any number of
lines may be updated at once. The CDU software sets the
flag IOWAIT when a block of data is complete. CDU software
remains idle until the I/0 handler process transmits the
data to the CDU I/O processor (CVIU) and clears the flag.

The utility procedure FMTOUT is used to build the CDU
output buffer. This module inserts the special control
codes into the data stream for the applications software
when called with the various parameters available. The next
section describes the use of FMTOUT.

The remainder of this section describes the special
control codes placed in the output buffer. The sign bit of
all function codes is set, therefore CVIU software parsing
the transmitted data can quickly identify leading, trailing,
and embedded functions. The high order nibble of a function
byte is the function identifier and the low order nibble is
the function qualifier. Therefore there are eight distinct
CDU functions (8xH - FxH), each having 16 qualifiers.

The following pages describe each of the defined function
identifiers and the effect of the various qualifiers,

PRECEDING PAGE BLANK NOT FILMED
PAGBE_ /€ INTENTIONALLY BLANK

.18

FUNCTION "8x" (1000---- binary); CLEAR LINE

This function is used to blank a line on the CDU display.
The qualifier bits designate which line is to be cleared.
Since there are 14 display lines on the CDU screen valid
values for this function are 81H through 8EH.

The count function "Ax" is placed immediately following
the clear line function to blank a number of contiguous
lines of the display.

The entire screen can be cleared by the two bytes "81H,

AEH".

FUNCTION "9x" (1001---- binary); UPDATE LINE

This function is used to replace all 24 characters on a
CDU display line. The qualifier bits designate the line
which will be updated. The count function "Ax" can follow
the update function to replace a number of consecutive lines.
valid values for this function are 91H through 9EH.

Directly following the updated function, or the count
function if supplied, are the ASCII character bytes used to
fill the designated line(s). For example, the following 25
bytes place an ASCII zero, "0", in each character position of
line number three.

93H,30H,30H,...... 30H

FUNCTION "Ax" (1010---- binary); LINE COUNT

This function is used to make the clear and update
functions (8x and 9x) work over a range of display lines.
The count function is valid only when immediately succeed-
ing the other two functions in the data stream.

The valid set of values for this function are AlH
through AEH.

19

FUNCTION "Bx" (101l1---- binary); sample scratch pad

This function requests immediate sampling of the CDU
scratch pad. The qualifier bits are undefined for this
function. When the "Bx" function is received any current
data entry is terminated and sent to the host computer as if
a LSK was pressed by the pilot. The scratch pad is cleared
and data entry mode is disabled. The termination byte,
normally the selected LSK code, will be FFH.

When no data exists on the scratch pad just the
terminator code is sent just like an LSK press with no data
(ie count byte = 1).

FUNCTION "Cx" (1100---- binary); SET MODE

The mode function handles several miscellaneous CDU
operations. In particular there are eight mode commands
(COH - C5H, CEH, CFH) which are described below.

- C0O -
This code is the end of transmission byte which is always
the last byte of the data block.

Cl

Mode qualifier "1" causes the CDU to be initialized.
After this byte is processed the display screen is clear,
all lights are off, video is standard, data entry is
disabled and data buffering is enabled.

..C2

Sets standard video. All text written to the CDU after
receiving this function will have the standard video
characteristic. Note that this code may be imbedded within
an ASCII text string.

C3

Sets reverse video. All text written to the CDU after
receiving this function will have the reverse video
characteristic. Note that this code may be imbedded within
an ASCII text string.

...C4_
Disables CDU data buffering. Keystrokes will be sent
immediately to the host computer as function entries.

-20-

..C5.
Enables CDU data buffering. Data may be entered on the
scratch pad by manual entry or software programming.

CE

Selects pilot’s CDU. This function (or CF) must always
be the first byte of the data sent to the CDU. This byte
is always followed by the CDU "lights" byte described below.

CF

Selects co-pilot’s CDU. This function (or CE) must
always be the first byte of the data sent to the CDU. This
byte is always followed by the CDU "lights" byte described

below.

CDU lights byte:

This byte is always the second byte of a transmission from
the host computer. The low-order 5 bits represent the
desired status of the CDU lights (bit set = light on).

The bits are assigned as follows.

0 FAIL
1 DSPY
2 MSG

3 OFST
4 EXEC

1) Note that when the MSG light is on, no scratch pad entry
may be started by either keyboard entry or scratch pad
programming with function "Dx". Any entry on the scratch
pad when MSG is set on can be finished and transmitted with
a LSK.

FUNCTION "Dx" (1101---- binary); SCRATCH PAD UPDATE

Function D is used to place a text string into the scratch
pad as if it had been manually entered via the keyboard. The
qualifier bits indicate the number of characters in the update
string (offset by one; 0 means 1, F means 16). Note the
string of characters immediately follows the function byte.

valid values for this function are DOH - DFH. The three
bytes given below would clear the scratch pad of any existing
entry and place the text "10" into the scratch pad area.

Note that the CDU will be in data entry mode after receiving
a "D" function.

D1H, 31H, 30H

Figure 3.0 .

00-0F
10-19
1A-1F
20-22
23
24
25
26
27-3F
40
41-5B
5C
5D
5E
SF
60
61-7A
7B
C
7D-FF

CDU OUTPUT CODES

small font digits (0-9)

standard ASCII
degrees F
degrees
standard ASCII
degrees C
standard ASCII
box

standard ASCII

standard ASCII
standard ASCII
small font alphabet

standard ASCII

21.

23

Section 3.1 CREATING OUTPUT WITH FMTQUT CALLS

Background CDU software creates a block of data
to refresh part or all of the CDU display screen with
calls to FMTOUT. The format of the call is as follows:

INTEGER*2 PAD, LENGTH, CODE
BYTE STRING (*)

CALL FMTOUT (PAD, STRING, LENGTH [, CODE])

Each call appends data to the current output buffer being
built for transmission to the CDU. The display codes at
"STRING" are added to the current line after padding with
"PAD" blanks. Note that all 24 characters of a line do not
need to be supplied. FMTOUT will extend all short lines
with blanks anytime a short line is terminated. The
optional code parameter is an integer value with several
defined bit fields. CODE is used to designate the start of
a new line, enable reverse video, program the scratch pad,
clear the screen, send special function codes, or terminate
the buffer to cause transmission.

There are predefined symbols used to create the CODE
word. The individual symbols must be added together
to produce the final integer parameter.

To send a literal string to FMTOUT use %REF() or a
Hollerith constant.

LINEO - LINE13 starts new line

VIDEO - string written in reverse video
SCRTCH - initialize scratch pad to string
EOT - finished updating current buffer

CLS - clear CDU screen

FCTN - string consists of special functions

The following example code segment creates one complete
update for the CDU. The change consists of new top and
bottom lines on the screen. The top line will have the text
"EXAMPLE PAGE" preceded by 2 blanks and followed by 10. The
bottom line will have the text "HELLO THERE FRED" followed
by 9 blanks. Note that FRED will be written in reverse
video.

CHARACTER*12 TITLE
INTEGER*4 USER

TITLE = ’'EXAMPLE PAGE’

USER = 'FRED’

CALL FMTOUT (2, %REF(TITLE), 12, LINEO)

CALL FMTOUT (0, $%REF ('HELLO THERE’), 11, LINE13)
CALL FMTOUT (1, USER, 4, VIDEO + EOT)

PAGE_.D) INTENTIONALLY BLAMK PRECEDING PAGE BLANK NOT FILMED

25

Section 4.0 CDU EXECUTIVE

This section contains the module descriptions for CDU
executive software. The executive software performs
miscellaneous functions that are independent of the
currently displayed CDU page. There are five modules
described in this section. The remaining executive modules
are associated with the data-link portion of the CDU and are
described in section 5. The majority of the CDU exec-
utive sofware, including data-link, is found on the file
CDUEXC.FOR.

c NG PAGE BLANY NCT F".MED
PhoE_\ 7 INTENTIONALLY BLAW PRECED! 3

__26_

MODULE NAME: CDUEXC

FILE NAME: CDUEXC.FOR
PROCESS: SLOW

CALLED BY: SLOW
CALLING SEQUENCE: CALL CDUEXC
PURPOSE:

To manage those CDU functions which are independent

of the current CDU display page.

DESCRIPTION:

This module performs several miscellaneous operations

for the CDU software. Since most sections of the module
are unrelated, the operations are simply itemized below in
the order found in CDUEXC.

Cause transmission of the CDU initialize code on start
up of the software.

Inhibit all CDU software until the I/0 handler has
completed last output.

Initialize output buffer with the predifined start byte
and the CDU lights byte.

Call MESSAGE MGR upon detecting data-link inputs.

Call EXEC_FCTN to handle special CDU function entries
not destined for specific page manager sofware. .

Compute the barometric pressure altitude correction
value and issue baro-set alert when traversing the
18,000 foot threshold.

Call active page manager software.

Perform auto-update of waypoints every ten seconds
when required by ’'P0OS’ type waypoints. Calls
UPDATE POS.

Manage "North-up" map display center position.

Place appropriate error messages into CDU output
buffer when problems detected by the various page
managers. Errors will be placed in the buffer each
time a new one is generated until the CLR key has
been pressed to acknowledge the error. At that time
the error message is replaced with the original
scratch pad entry which caused the error. Warning
messages are only sent out one time. Acknowledgement
by CLR entry is not required for these. See figure
4.0 at the end of this section for error codes and
their associated message.

-27~

GLOBAL REFERENCES:

VARIABLES
ALTCOR BARSET* BARSFT* CDUCNT* CDU INIT* CDU MODE CTRF*
ERCODE* IOWAIT LT DSPY LT EXEC LT FAIL LT MSG* LT OFST
MODCNT PGINIT* PGRQST* POSTIME* TIME TIME VLD -

ARRAYS
ENTRY LOKWPT MESSAGE OLDPAGE*

RECORD ARRAYS
WPT MOD

FUNCTIONS AND SUBROUTINES
EXEC _FCTN FMTOUT LINK CMD MESSAGE MGR SELECT UPDATE POS

28

MODULE NAME: EXEC_FCTN
FILE NAME: CDUEXC.FOR
PROCESS: SLOW
CALLED BY: CDUEXC

CALLING SEQUENCE: CALL EXEC_FCTN(SAVE, ER_FLAG)

PURPQSE:
To process CDU function entries not intended for the

current CDU page display module.

DESCRIPTION:

When CDUEXC receives a function entry it calls
EXEC FCTN to determine if the entry is the type handled
by the executive. If not, EXEC_FCTN returns and the entry
is used by the current page display module.

The types of function entries handled by EXEC_FCTN
are listed below along with a brief description of the
actions taken.

CDU page selection; The function keycode is used as an
index into a page ID array and placed in the page change
request variable (PGRQST). '

Clear key (long or short press); If an error message is
displayed it is replaced with the data entry which caused
the error by a call to RECALL. The message light is also
turned off. When no error message is shown this function
simply blanks the bottom CDU line.

Execute key; When the execute light is not on this
function is ignored. Otherwise if there is a provisional
flight plan it is made active by a call to EXECUTE. When
neither condition is true the execute function is assumed
to be handled by the current page display software.

If none of the above were true and an error message is
currently displayed then the entered function (LSK,
PREV/LAST page, or DEL) is ignored.

Delete key; The scratch pad line is programmed with the
word "DELETE". Typically this text will be placed at a
particular display line with a LSK to designate the
deletion of a certain CDU item.

GLOBAL REFERENCES:

VARIABLES
ERCODE LT EXEC PGRQST* PMODE

ARRAYS
CDUBUF* ENTRY*

FUNCTIONS AND SUBROUTINES
EXECUTE FMTOUT RECALL

-29-

MODULE NAME: RECALL
FILE NAME: CDUEXC.FOR
PROCESS: SLOW
CALLED BY: EXEC_FCTN, MESSAGE MGR
CALLING SEQUENCE: CALL RECALL(SAVED_ENTRY)
PURPOSE:
To recall erroneous data entry.
DESCRIPTION:
When CDU entries cause error message displays the
erroneous entry is saved in a buffer "SAVE". The entry

is programmed back into the scratch pad by RECALL. Note
that when no text exists for reprogramming (function entry
error for example) the only action is to clear the bottom
CDU display line.

GLOBAL REFERENCES:

FUNCTIONS AND SUBROUTINES
FMTOUT

30

MODULE NAME: SELECT

FILE NAME: SELECT.MAR

PROCESS: SLOW

CALLED BY: CDUEXC

CALLING SEQUENCE: CALL SELECT (PAGE_1ID)

CALLS TO: DSP DUMP, INITREF, IDENT, INITPOS,

PFINIT, TKOFF, APPREF, NAVPG, STATPG,
ROUTE, CLIMB, CRUISE, DESCENT, LEG_MGR,
RTENDX, EPRLIM, PROGRESS, INTC MGR,
DEPARR, FIX INFO, HLD_MGR, LEG TIME,
TEST, RTENDX -

PURPOSE:
Call the appropriate page manager subroutine.

DESCRIPTION:

The variable "PAGE" contains the index of the current
CDU display page. During each iteration of the CDU
executive, the module SELECT is called to perform the
corresponding call to a page manager listed in a local
address table. Note that the values for "PAGE" have
predefined symbolic names assigned in the file CODES.CDU.

GLOBAL REFERENCES: none

31

MODULE NAME: UPDATE_POS
FILE NAME: CDUEXC.FOR
PROCESS: SLOW
CALLED BY: CDUEXC

CALLING SEQUENCE: CALL UPDATE POS

PURPOSE:
To update the "POS" type waypoint with current aircraft
parameters.

DESCRIPTION:

A provisional flight plan may begin with a "pos" type
waypoint which does not become stationary until the flight
plan has been executed. The position, altitude, and speed
of the pilot defined waypoint are updated every 10 seconds to
the values of the aircraft. The module DEMODE is called to
incorporate the changes into the provisional flight plan.

The variable POSTIME is set to the update time by CDUEXC.
During every iteration, POSTIME is compared to the current
aircraft time to check for 10 seconds elapsed. When this
occurs the call to UPDATE POS is made. Note that a POSTIME
value of zero corresponds to no "POS" waypoint to update.

GLOBAL REFERENCES:

VARIABLES
ALTCOR GS LAT LON

RECORD ARRAYS
PPT_WPT* WPT_MOD

FUNCTIONS AND SUBROUTINES
DEMODE FIND PPT

ERROR CODES AND MESSAGES

1)
2)
3)
4)
5)
6)
7)
8)
9)
10)
11)
12)
13)
14)
15)
16)

INVALID DATA ENTRY
CHECK AIRFIELD

NOT FOUND IN MEMORY
BUFFER OVERFLOW

DEAD KEY ERROR

ENTRY WPT NOT DEFINED
INVALID EXIT WPT

BAD RADIUS AT XXXXX
NO DATA

DEAD WAYPOINT ERROR
BAD DATA FORMAT

ENTRY OUT OF RANGE
INVALID DELETE :
ILLEGAL ASSIGNMENT
FIX ALREADY SPECIFIED
NO ABEAM RADIAL

EXAMPLES

LSK can be used for neither data nor function entries

1LSK cannot be used for data entries (function OK)

LSK cannot be used for function entries (data OK)

NEXT or PREV cannot be used

Programmed DELETE unacceptable

Allowed data entry is unacceptable because ...
unrecognizable data
recognized data can’t be used because
data base search failure
below or above acceptable value range
specific value improper in context

codes 2,

4,

6,

7, 8, 10, 15 & 16 are for specific cases

-figure 4.1-

13

11

12
14

33

Section 5.0 CDU DATA-LINK

One method of input to CDU software is through the
TSRV data-link. This method is used to receive clearance
information sent by ground controllers. The CDU also is
used for data-link outputs when composing messages and
sending clearance requests to the ground station.

Two blocks of memory are allocated for data-link
I/0 in the global section IPLCOM. The data at these
locations is transmitted between the FM/FC VAX and the
data-link computer every 50 milliseconds. The input area
consists of 102 bytes of memory. The first 2 bytes are
labeled CDU CMD and are used as a bit control word for
commands from the data-link computer. The remaining 100
bytes (LINK IN) may contain a text string uplinked from the
ground station. The memory allocated for output is a 202
byte block. The first 2 are bytes used as a control word
to be sent to the data-link computer to describe the text
data stored in the remaining 200 bytes. The first word is
labeled MSG_CNT and the text block is CDU_MSG. MSG_CNT
uses the low byte as a character count of the data in
CDU_MSG. MSG CNT is not updated until the CDU background
software has completed the entire text buffer. The high
byte of MSG CNT is used to control the use of the text
buffer by the data-link computer. When composing a text
message or sending the current provisional flight plan
to the data-link computer this byte is zero. When the
processxng of a new clearance sent by the data-link computer
is complete it will be set to FFH, unless an error in the
uplinked clearance was detected. With a clearance error
the byte will contain the character count of an error
message appended to the text buffer. The total length of
the text buffer is then the sum of the low and high bytes
of MSG CNT.

The CDU executive calls the module LINK CMD each
iteration of the background process to check for any data
link commands in CDU CMD. The variable CDU MODE is set
by LINK CMD to signal MESSAGE MGR (called by CDUEXC) to
initiate message handling by the various CDU data-link
modules. The remainder of this section contains module
descriptions for all the CDU data-link procedures.

.34

MODULE NAME: ADD PLAN

FILE NAME: LINK.FOR

PROCESS:: SLOW

CALLED BY: LINK_RT

CALLING SEQUENCE: CALL ADD PLAN (WPT_NAME)
PURPOSE:

To prepare the provisional flight plan for the
insertion of the new data-link clearance waypoints.

DESCRIPTION:

This procedure is called with the name of the first
waypoint of the new clearance. The current flight plan
is searched for a match of the input waypoint. If it
is not there the old flight plan is removed and the
input waypoint is made the first of the new plan. When
the waypoint does exist in the current flight plan all
waypoints after it are removed. Note that the waypoint
may be part of a route function, in which case the
procedure must make the input waypoint the new exit
waypoint of the route function.

GLOBAL REFERENCES:

VARIABLES
ACTCNT ACTION*

ARRAYS
ENTRY* RTE_CNT*

RECORD ARRAYS
RTE_MOD* WPT_MOD

FUNCTIONS AND SUBROUTINES
BOUNDS FILL RTE RTE_WPT WPT_ADDR

35

MODULE NAME: BEG_RTE

FILE NAME: LINK.FOR

PROCESS: SLOW

CALLED BY: LINK PD

CALLING SEQUENCE: CALL BEG_RTE (RTE_ BUFFER INDEX)
PURPOSE:

To prepare the provisional route buffer for proceed
direct assignment.

DESCRIPTION:

BEG_RTE modifies the provisional route buffer so that
the entry indicated by the input parameter RTE BUFFER INDEX
becomes the second element of the route buffer. To do this
it may eliminate elements, open a new slot at the start, or
simply leave the buffer alone (already #2) depending on the
value of RTE BUFFER INDEX.

GLOBAL REFERENCES:

FUNCTIONS AND SUBROUTINES
KILL OFEN

-36-

MODULE NAME: BYTE IN

FILE NAME: CDUEXC.FOR
PROCESS: SLOW

CALLED BY: MESSAGE_MGR
CALLING SEQUENCE: CALL BYTE 1IN
PURPOSE:

To handle CDU keyboard entries during data-link message
composition mode.

DESCRIPTION:

When BYTE IN is called one CDU key code resides in the
CDU input buffer, ENTRY. The action taken depends on the
type of key entered. If it was a page change or execute
key it is simply passed on to the current page software
called later by the executive. 1If a line select or delete
key was pressed the entry buffer is cleared and the key is
ignored. All other keys affect the CDU message being com-
posed. A short clear removes the last character from the
text while a long clear clears the entire message. Any
other key received is an alphanumeric which is appended
to the message buffer.

GLOBAL REFERENCES:

VARIABLES
FUNC MSG_CNT

ARRAYS
CDU_MSG* ENTRY*

MODULE NAME: DELIMIT
FILE NAME: LINK.FOR
PROCESS: SLOW
CALLED BY: LINK EA, LINK PD, LINK RT
CALLING SEQUENCE: CALL DELIMIT(TEXT, CNT, DONE)
PURPOSE:

To parse the data-link clearance message.
DESCRIPTION:

This procedure parses the input string TEXT searching
for either a "." or ":" character which are the only

valid terminaters. The string length is returned in CNT
and the boolean flag DONE is returned when at the end of
the clearance message (":" encountered).

GLOBAL REFERENCES: none

37

.38

MODULE NAME: EXPAND RTE

FILE NAME: LINK.FOR

PROCESS: SLOW

CALLED BY: DEMODE, LINK CMD, REJECT
CALLING SEQUENCE: CALL EXPAND RTE

PURPOSE:

To create an expanded data-link text buffer for the
data-link display.

DESCRIPTION:

When the flight crew desires to request a clearance,
the current provisional flight plan is formatted into
the data-link display buffer for transmission to the
data-link computer. This is performed when the initial
request is received and each time the provisional flight
plan is changed during clearance request mode. This
procedure steps through the provisional flight plan
storing data into the display buffer with calls to
TEXT OUT. The destination airfield and cruise altitude
are also formatted into the buffer.

GLOBAL REFERENCES:

VARIABLES
CRZALT MSG_CNT

ARRAYS
AIRPTS CDU_MSG* RTE_CNT

RECORD ARRAYS
RTE_MOD

FUNCTIONS AND SUBROUTINES
FILL _OUT FSTRNG GET LONG TEXT_OUT TYPE_WPT

39

MODULE NAME: FILL OUT

FILE NAME: LINK.FOR

PROCESS: SLOW

CALLED BY: MESSAGE MGR, LINK EA, LINK RT,

TEXT _OUT, EXPAND RTE
CALLING SEQUENCE: CALL FILL OUT(COUNT, BUFFER)

PURPOSE:
To fill data into the data-link message buffer.

DESCRIPTION:

The data specified by the input parameters is appended
to the data-link display buffer that is built when flight
plan clearance information is received. A display buffer
pointer is maintained to account for the append position.

GLOBAL REFERENCES:

VARIABLES
MSG_CNT*

ARRAYS
CDU_MSG

FUNCTIONS AND SUBROUTINES
LIB$SMOVC3

40

MODULE NAME: FILL _RTE

FILE NAME: LINK.FOR

PROCESS: SLOW

CALLED BY: LINK PD, ADD PLAN

CALLING SEQUENCE: CALL FILL RTE (INDEX, ADDRESS)
PURPOSE:

To make a data-link waypoint entry in the route buffer.

DESCRIPTION:

FILL RTE is called to fill in waypoint information in
the provisional route buffer at the position indicated
by the input parameter INDEX. If the address of the
waypoint is supplied as a non-zero value, the waypoint
is simply entered into the buffer position. Its type
is determined by the function WPT_TYPE. When the address
parameter is zero, FILL_RTE creates a "POS" pilot defined
waypoint at the current aircraft position and inserts the
created waypoint data into the route buffer. The function
MAKE WPT is used to create the waypoint.

GLOBAL REFERENCES:

VARIABLES
ALTCOR GS LAT LON

RECORD ARRAYS
RTE_MOD*

FUNCTIONS AND SUBROUTINES
MAKE WPT TYPE WPT

41

MODULE NAME: LINK CMD

FILE NAME: LINK.FOR
PROCESS: SLOW

CALLED BY: CDUEXC
CALLING SEQUENCE: CALL LINK CMD
PURPOSE:

To serve as the data-link software executive.

DESCRIPTION:

LINK CMD is called by the CDU executive (CDUEXC) every
pass through the background software. It monitors the
data-link control word received from the data-link computer
to initiate the appropriate actions for the specific data
link commands.

The bits of the data-link control word (CDU CMD) are

assigned as follows.

CDU message composition mode

Clearance information received

Insert clearance as provisional flight plan

Erase previously received clearance

Clear current message composition buffer

Send current provisional flight plan to data-link

N Wk o

LINK_CMD looks for a change in state of the CDU_CMD bits,
performing certain operations when a bit changes from
off to on and others for changes from on to off.

The Insert command from the data-link computer requires
special checking in LINK CMD. 1If a provisional flight plan
already exists when the Insert clearance is commanded the
uplinked flight plan is not placed into the guidance buffer.
Instead an error message is appended to to expanded flight
plan text in CDU_MSG. The software then waits for another
Insert command. When the second Insert is issued and the
provisional guidance buffer is finished LINK CMD restarts
the parsing of the uplink clearance. This occurs since the
changes to the flight plan which were being made may alter
how the clearance affects the current flight plan. When the
clearance processing is complete the insertion occurs
immediately without response from the data-link computer.

Note that clearance commands may occur during CDU data
link output sequences; data composition or clearance
requests. LINK CMD will save the current output data to
make room for the overriding clearance data. When the new
clearance sequence is finished the CDU will be restored to
the previous state of data-link output.

42

GLOBAL REFERENCES:

VARIABLES
ACTION CDU_CMD CDU_MODE* CRZALT* LNK CNT LNK CRZ MSG CNT*
NEW CMD PMODE POSTIME* SQUAT TIME - -

ARRAYS
AIRPTS CDU_MSG LNK _ARPT LNK_RTE MSG_BYT* RTE CNT* WX DEF

RECORD ARRAYS
RTE_ACT RTE_MOD

FUNCTIONS AND SUBROUTINES
DEMODE EXPAND RTE LIBSMOVC3

43

MODULE NAME: LINK EA

FILE NAME: LINK.FOR

PROCESS: SLOW

CALLED BY: MESSAGE MGR

CALLING SEQUENCE: CALL LINK EA(MESSAGE, INDEX, ERR_TEXT)
PURPOSE:

To handle expected altitude clearances from the data-link.

DESCRIPTION:

The input to LINK EA is the parameter MESSAGE. It
contains all the uplinked clearance following the "EA"
field found by MESSAGE MGR. The remaining parameters are
outputs. INDEX is the pointer into the data-link input
buffer LINK_IN. It is updated to point to any clearance
following the EA data. ERR _TEXT is filled with text
information when an error is detected while parsing the
EA data.

The only data used in the EA clearance is an altitude
assignment. The entry is decoded by the function ALTX.
The message for the data-link display is created and
stored in CDU_MSG and the altitude value is saved in the
global variable LNK CRZ.

GLOBAL REFERENCES:

VARIABLES
ACTION* ERCODE LNK CRZ*

FUNCTIONS AND SUBROUTINES
ALTX DELIMIT FILL OUT ISTRNG LIBS$MOVC3

-4

4_
MODULE NAME: LINK_PD
FILE NAME: LINK.FOR
PROCESS: SLOW
CALLED BY: MESSAGE_MGR
CALLING SEQUENCE: CALL LINK_PD(MESSAGE, INDEX, ERR_TEXT)
PURPOSE:
To handle Proceed Direct clearances from the data-link.
DESCRIPTION:

The input to LINK PD is the parameter MESSAGE. It
contains all the uplinked clearance following the "PD"
field found by MESSAGE MGR. The remaining parameters are
outputs. INDEX is the pointer into the data-link input
buffer LINK IN. It is updated to point to any clearance
following the PD data. ERR TEXT is filled with text
information when an error is detected while parsing the
PD data.

When LINK PD is called it finds the waypoint name
supplied in MESSAGE in the navigation data base, AADCOM.
Once identified, a search of the provisional route buffer is
made to determine if the waypoint exists on the provisional
flight plan. If it does, all the waypoints preceding the
selected waypoint are replaced by an auto-update "POS"
waypoint, the remainder of the flight plan is not altered.
When the selected waypoint is not part of the provisional
flight plan a provisional flight plan consisting of an
auto-update "POS" waypoint and the selected waypoint become
the only two provisional flight plan waypoints.

Note that the actual route buffer manipulations are
performed through calls to BEG_RTE and FILL RTE.

GLOBAL REFERENCES:

VARIABLES
ACTION* ERCODE MSG CNT

ARRAYS
CDU_MSG* ENTRY* RTE_CNT*

RECORD ARRAYS
RTE_MOD

FUNCTIONS AND SUBROUTINES
BEG_RTE BOUNDS DELIMIT FILL_RTE GET_LONG KILL LIB$MOVC3
TEXT OUT WPT_ADDR

45

MODULE NAME: LINK_RT
FILE NAME: LINK.FOR
PROCESS: SLOW

CALLED BY: MESSAGE MGR

CALLING SEQUENCE: CALL LIﬁK_RT(MESSAGE, INDEX, ERR_TEXT)

PURPOSE:
To handle route clearance messages from the data-link.

DESCRIPTION:

The input to LINK RT is the parameter MESSAGE. It
contains all the uplinked clearance following the "RT"
field found by MESSAGE MGR. The remaining parameters are
outputs. INDEX is the pointer into the data-link input
buffer LINK IN. It is updated to point to any clearance
following the RT data. ERR TEXT is filled with text
information when an error is detected while parsing the
RT data.

A RT clearance consists of one or more waypoints for
the aircraft flight plan. Origin and destination air-
fields may be supplied also. The waypoint data can
appear in several forms. Including individual waypoints,
airway segments, standard instrumentation departures (SID),
standard terminal arrivals (STAR), approaches, and implicit
runway waypoints. The different types of multiple waypoint
constructs are collectively referred to as route functions.

LINK RT starts by using the procedure DELIMIT to
parse the input message. Each item in the clearance
is separated and saved for later processing in a
waypoint/route function list. 1If the first entry in the
list is an origin airfield a total reclearance is made.
Note that a previously entered flight plan can only be
erased when the aircraft is on the ground. When the last
entry is an airfield it is used as the destination airport.
When no destination has been entered, manually or by data-
link, the destination is assumed to be the same as the
origin.

There are three situations that are identified to
prepare the provisional route for the new clearance.

If the origin airfield was supplied, a completely new
clearance is made. This means all previous waypoints are
eliminated and the "new plan" flag is set which effects
the processing in the module "RT NEW". When the clearance
is a SID, STAR or APPROACH no flight plan preparartion is
needed since these always replace existing pieces or come
at the very beginning or end of the flight plan. Other
clearances are modifications to the existing flight plan
which requires a call to ADD PLAN to prepare the provisional
guidance buffers. Once the preparation phase is complete
LINK RT steps through each item of the list with a call to
RT NEW to enter the flight plan.

46

GLOBAL REFERENCES:

VARIABLES
ACTION* ERCODE MSG _CNT SQUAT

ARRAYS
AIRPTS CDU MSG* RTE_CNT*

FUNCTIONS AND SUBROUTINES
ADD PLAN DELIMIT FILL OUT LIBSMOVC3 LUARP RT NEW TEXT_OUT

-47-

MODULE NAME: MESSAGE MGR

FILE NAME: CDUEXC.FOR

PROCESS: SLOW

CALLED BY: CDUEXC

CALLING SEQUENCE: CALL MESSAGE_MGR (ENTRY_RESTORE BUFFER)
PURPOSE:

To manage the creation of data for the CDU MSG data-link
output buffer.

DESCRIPTION:

MESSAGE MGR uses the global index CDU MODE to determine
the action required. It is not called when CDU MODE is set
to zero.

When CDU MODE is set to -1 a new clearance has been
received. The cryptic text uplinked from ground control
must be expanded into more meaningful text for display to
the flight crew on the data-link display. The expanded
text is stored in the data-link output buffer CDU MSG. A
new provisional flight plan is also created from the up-
linked clearance. The original clearance data is saved
while the called modules create the new one. After
processing is complete the original is restored and the
new data is saved to be available when the flight crew
chooses to "INSERT" the data-link clearance into the
flight plan. There are four different types of clearance
messages, and one or more will be found in a new data-link
clearance. They are denoted by the following 2 letter
code in the input text.

RT Route clearance

PD Proceed direct to a position
EX Expected arrival clearance
EA Expected altitude

The module LINK RT is called for both the RT and EX types.
The PD and EA types are processed by calls to LINK PD and
LINK EA respectlvely

When CDU MODE is set to 1 a sequence of events is started
for the data-link text message composition on the CDU
scratch pad line. On each iteration of the CDU executive
one of the follwing steps is taken.

CDU MODE = 1: The CDU scratch pad sample request is sent
to the CDU. CDU MODE is set to 2.

CDU MODE = 2: 1If the sample scratch pad has arrived the
sampled data is saved, the CDU is commanded into no
data buffering mode, and CDU MODE is set to 3.

48.

CDU MODE = 3: The CDU remains in this mode until the
comp031tlon text is complete. Each key entry on the
CDU is appended to the current text buffer and the
last 20 chracters of the text are output to the
CDU scratch pad.

CDU _MODE = 4: This mode is set by the module LINK CMD
when message composition termination is detected.
MESSAGE_MGR commands the CDU back into scratch pad
buffering of text and reprograms the scratch pad
with any data that existed there before composition
mode was started.

GLOBAL REFERENCES:

VARIABLES
CDU_MODE* ERCODE LNK_CNT* LNK_CRZ* MSG_CNT* SAVE_CNT TIME

ARRAYS
AIRPTS* CDU MSG ENTRY LINK_IN LNK_ARPT* LNK_RTE MESSAGE

MSG BYT* RTE CNT* SAVE | MOD

RECORD ARRAYS
RTE_MOD

FUNCTIONS AND SUBROUTINES
BYTE IN FILL OUT FMTOUT GET_WORD LIBSMOVC3 LINK _EA LINK_PD
LINK _ “RT RECALL SHOW__ MESSAGE

..49..

MODULE NAME: RT NEW

FILE NAME: LINK.FOR

PROCESS: SLOW

CALLED BY: LINK RT

CALLING SEQUENCE: CALL RT NEW(NAME, LENGTH, NEW PLAN)
PURPOSE:

To enter clearance data into the flight plan.

DESCRIPTION:

RT NEW is called with three input parameters from the
procedure LINK RT. The first is the name of a route item
such as a waypoint or airway. The length of the name is
the second parameter and the third is a flag indicating
whether or not the current clearance was a new flight plan.

This module identifies the type of clearance entry and
calls the appropriate subroutine to store the information
in the flight plan being created for the received data-link
clearance. The only clearance allowed when NEW PLAN is
false is a departure/arrival type entry. These are handled
with a call to MODIFY. The NEW PLAN type entries include
departure/arrivals, waypoints, and airways. The waypoint
entries are placed in the flight plan with a call to
WAYPOINT while other types use a call to GROUP.

GLOBAL REFERENCES:

VARIABLES
ERCODE* LINE* MSG _CNT

ARRAYS
CDU_MSG* RTE_ CNT

RECORD ARRAYS
RTE_MOD

FUNCTIONS AND SUBROUTINES
GET_LONG GROUP MODIFY RTE 1D TEXT _OUT TYPE WPT WAYPOINT WPT ID

50

MODULE NAME: SHOW MESSAGE
FILE NAME: CDUEXC.FOR
PROCESS: SLOW

CALLED BY: MESSAGE MGR

CALLING SEQUENCE: CALL SHOW_MESSAGE

PURPOSE:
To display the composed data-link message on the CDU.

DESCRIPTION:

SHOW MESSAGE is called when the data-link computer has
placed the CDU in message composition mode. 1In this mode
the pilot creates a message intended for the ground
controllers. This module writes the text "MSG>" to the
CDU scratch pad and appends the last 20 characters of the
message.

GLOBAL REFERENCES:

VARIABLES
MSG_CNT

ARRAYS
CDU_MSG

FUNCTIONS AND SUBROUTINES
FMTOUT

_51...

MODULE NAME: TEXT_ OUT

FILE NAME: LINK.FOR

PROCESS: SLOW

CALLED BY: LINK PD, LINK RT, RT NEW, EXPAND RTE

CALLING SEQUENCE: CALL TEXT OUT (ADDRESS, TYPE)

PURPOSE:
To store expanded message text for data-link display.

DESCRIPTION:

TEXT_OUT is called with an address of a route buffer item
and its type. The item may be a waypoint or a route func-
tion. The following list describes the text stored in the
data-link display buffer for the various types of route
elements.

GRP or PPT waypoint - the waypoint name
other waypoints - AADCOM text associated with WPT

Airways - the word VICTOR or JET followed by the
airway number

SID/STAR/APPROACH - AADCOM text associated with the
route function followed by the
text APPROACH, DEPARTURE, or
ARRIVAL

GLOBAL REFERENCES:

VARIABLES
MSG_CNT

ARRAYS
CDU_MSG*

FUNCTIONS AND SUBROUTINES
FILL_OUT GET BYTE GET LONG

53

Section 6.0 CDU FLIGHT PLAN OPERATIONS

The most common use of the CDU is the creation and
modification of the aircraft flight plan. Over 100
procedures are dedicated to transforming the pilots
flight plan entries to a database used for aircraft
guidance and cockpit displays. The flight crew may
examine details of the flight plan on both the CDU and
the navigation display. The flight plan database is
used by automatic guidance to produce aircraft control
signals and by the primary flight display to drive
guidance cues used in manual flight operations.

The basic element of the flight plan is the waypoint.
A waypoint is a global position defined by its latitude
and longitude. Waypoint positions may be defined for
some real geographic location such as a VOR transmitter
or may be a convenient location such as the start of the
final approach leg to a runway. The following are the
different types of waypoints used in the ATOPS CDU
system.

GRP - Ground reference point.

NAVAID - Navigational aid transmitter; VOR, DME, TACAN.

AIRFIELDS - Airfield tower position.

PILOT WAYPOINT - Dynamically generated waypoint. Can
be created as a bearing and distance from a fixed
reference (including the airplane) or an absolute
latitude/longitude value.

Predefined groups of waypoints are referred to as route
functions. The waypoints in a route function are defined
in a sequence which is used to form a connected path
segment. Not all waypoints defined for a route function
must be included into the flight plan. Particular entry
and exit waypoints may be chosen to bound the set of
waypoints actually used in the plan. The different types
of route functions used in the CDU are as follows.

SID - Standard Instrument Departure for airports.

AIRWAY - Both Victor and Jet airways which are bi-
directional routes defined for major air traffic.

STAR - Standard Terminal Arrival Routes to airports.

APPROACH - Approach path to a particular airfield’s
runway.

HOLD - Holding pattern consisting of four pilot
waypoints.

RABE DO\ INTENTIONALLY BLANE PRECEDING PAGE BLANK NOT Fi-MED

54

The flight plan is made up of waypoints, route functions,
and route dicontinuities which are collectively referred to
as route elements. Route discontinuities are gaps in the
flight plan which seperate path segments. They require a
position in the route and waypoint buffers as do the
previously mentioned elements, however the various data
fields in the buffer are zeroed.

The desired route elements are manually entered into the
flight plan by use of the various clearance pages of the
CDU, shown below.

.55

ROUTE - Enter origin/destination airfields and route
elements into the flight plan.

LEGS - Enter individual waypoints and their constraints
into the flight plan.

DIRECT/INTERCEPT - Designate a destination waypoint to
be reached by a "Direct To" segment or a fixed bearing
intercept.

LEG TIME - Specify an arrival time at a particular
waypoint.

ROUTE INDEX - Request airway intercept.

HOLD - Define holding pattern.

DEPARTURE/ARRIVAL -~ select airfield departure and
arrival routes.

Any particular waypoint on the path may have up to four
constraints applied to it. These are altitude, speed,
arrival time, and turn radius. The waypoint positions and
their constraints are the parameters which are used in the
creation of the waypoint guidance buffer used by flight
management and display procedures.

57..

Section 6.1 THE FLIGHT PLAN DATABASE

There are eight data buffers used to save flight plan
information. The following sections describe the form
and usage of the data stored. Each buffer is part of
the set of commons defined as system global sections.

P CR— GE : T OFILM
A€ 50 mition ALY S PRECEDING PAGE BLANK NGT FI_MED

59

Section 6.1.1 THE NAVIGATION DATABASE (AADCOM)

AADCOM is a read-only global common containing all
pre-defined aircraft navigation data. A pointer block
is placed at the begining of the common to direct search
routines to the various data areas within the common.
The format of the pointer block is as follows.

OFFSET LABEL POINTER TO

0 IBPTR longitudinal strip data
4 BULK ID database ID text

20 JETPTR jet airways

21 VICPTR victor airways

28 RTEPTR standard route airways
32 RESPTR restricted areas

36 ADZPTR air defense zones

40 CDZPTR coastal defense zones

The longitudinal strip data consists of airfields, GRPs,
NAVAIDs, and obstruction points existing within two degree
increments of longitude. A strip is made up of a longitude
boundary pair followed by four address pointers to the
previously mentioned strip data items. The format of the
various strip items is shown below. Note that a zero
terminater word is used to denote the end of any block of
navigation data.

AIRFIELDS:
OFFSET TYPE DATA

0 CHAR*4 airfield name

4 CHAR*1 " " (always blank)

5 not used

6 REAL*4 control tower latitude (deg)
10 REAL*4 control tower longitude (deg)
14 INT*4 pointer to next strip airfield
18 REAL*4 main runway length (ft)
22 REAL*4 main runway true heading (deg)
26 REAL*4 local magnetic variation (deg)
30 REAL*4 elevation
34 INT*14 terminal data block pointer (not used)
36 INT*2 tower frequency (2X5 code)
38 INT*2 clearance frequency (2X5 code)
40 INT*2 ground control frequency (2X5 code)
42 INT*2 ATIS frequency (2X5 code)
44 INT*4 pointer to list of SIDs
48 INT*4 pointer to list of STARs
52 INT*4 pointer to list of APPROACHSs
506 INT*4 airfield ID pointer

60 nx48 runway data blocks

PRECEDING PAGE BLANK NGT ' MED
PABE_ 55 INTENTIONALLY BLANK

-60-

STANDARD INSTRUMENT DEPARTURE (SID) &

STANDARD TERMINAL ARRIVAL ROUTE (STAR):

AIRFIELDS -

QFFSET TYPE
0 CHAR*6

6 INT*4

10 INT*4
14 INT*4
18 REAL*4
22 REAL*4
26 REAL* 4
30 REAL*4
(N-1)*20+14

(N-1) *20+34

DATA

SID name

next item pointer (used for last wpt access)
SID ID pointer

first waypoint pointer

first waypoint assigned altitude (ft)

first waypoint assigned speed (kt)

first waypoint assigned radius (ft)

first waypoint DME arc bearing (deg)

Nth waypoint pointer

zero terminater

AIRFIELDS - APPROACHES:

These are identical to SID/STAR data format except for the
insertion of a runway pointer at offset ten which increases
all offsets above ten by four bytes.

AIRFIELDS - RUNWAYS:

OFFSET
0
3
4
8

12
16
20
24
28
32
36
40
44

TYPE
CHAR*3
BYTE

REAL*4
REAL*4
INT*4

REAL*4
REAL*4
REAL*4
REAL*4
REAL*4
REAL*4
INT*4

INT*4

GROUND REFERENCE

OFFSET
0
5
)
10
14

TYPE
CHAR*5
BYTE
REAL*4
REAL*4
INT*4

DATA

runway name

not used

threshold latitude (deg)
threshold longitude (deq)
outter marker pointer
MLS/ILS latitude (degq)
MLS/ILS longitude degq)
runway length (ft)

runway true heading (deg)
runway elevation (ft)
glide slope angle (deg)
ILS frequency (2X5 code)
missed approach path pointer (not used)

POINTS (GRPs):

DATA

GRP name

compulsory report flag
GRP latitude (deg)

GRP longitude (deg)
navaid pointer

NAVIGATIONAL AIDS

OFFSET TYPE
0 CHAR*3
3 BYTE
4 INT*4
6 REAL*4
10 REAL*4
14 REAL*4
18 REAL*4
22 INT*4
OBSTRUCTIONS:
OFFSET TYPE
0 BYTE
1 CHAR*S
6 REAL*4
10 REAL*4
AIRWAYS:
OFFSET TYPE
0 CHAR* 6
6 INT*4
10 INT*4
4* (N-1)+10
4* (N-1)+14
COMPANY ROUTES:
OFFSET TYPE
0 CHAR* 6
6 INT*4
10 INT*4
14 INT*4
18 INT*4
22 INT*4
26 INT*4
4* (N-1)+26

4* (N-1)+30

(NAVAID) :

DATA

navaid name

bit set O:compulsory 1l:vortac
2:non-directional 3:high alt 7:always
frequency (2X5 code)

navaid latitude (deg)

navaid longitude (degq)

local magnetic variation (deg)
altitude (ft)

navaid ID pointer

DATA

bit 7 set: obstruction, else mountain
obstruction altitude

obstruction latitude

obstruction longitude

DATA

airway name

pointer to next airway
waypoint #1 pointer

waypoint #N pointer
zero terminator

DATA

route name

pointer to next route

origin airfield pointer
destination airfield pointer
SID pointer

STAR pointer

waypoint #1 pointer

waypoint #N pointer
zero terminator

62

BOUNDARIES:

OFFSET TYPE
0 INT*2
2 CHAR*6
8 REAL*4
12 REAL*4

8*% (N-1) +8

8* (N-1)+12

8* (N-1) +16

DATA

not used

boundary #1 name

bound #1, point #1 latitude
bound #1, point #1 longitude

bound #1, point #N latitude
bound #1, point #N longitude
zero terminater

(boundary #2-N; terminated with zero word)

TEXT ID BLOCK:
OFFSET TYPE
0 BYTE

1 CHAR*N

DATA
ID character count
ID text

~63-

Section 6.1.2 WAYPOINT CONSTRAINTS (CONBUF)

The constraint buffer holds altitude, speed, and
turn radius values specified for flight plan waypoints.
The connection between the route and the various
constraint buffer packets is the ".CPTR" node of the
route buffer structures (see Section 1.5.1.5). When
the route buffer element is a route function ".CPTR"
will be an index of a linked list of constraint packets
in the buffer. Note that waypoint constraints from the
system database and cruise altitude assignments do not
appear in the constraint buffer. The structure of the
constraint buffers is as follows.

INTEGER*4 CONBUF (4, 50) ! 50 PACKETS OF 4 LONG WORDS EACH.

CONBUF (1,I) 0-15: RTE OFFSET TO WAYPOINT (0 FOR NON-RTE WPT)
16-18: ALT/SPD/RAD DEFINED FLAG
19-22: UNUSED
23: ACTIVE CONSTRAINT FLAG
24-31: INDEX TO NEXT RTE CONSTRAINT (0 ~ NO MORE)
CONBUF (2,I) 0-31: ALTITUDE CONSTRAINT VALUE
CONBUF (3,I) 0-31: SPEED CONSTRAINT VALUE
CONBUF (4,I) 0-31: RADIUS CONSTRAINT VALUE

65.

Section 6.1.3 HOLDING PATTERN DATA (HLDBUF)

The common block "HOLD"™ is a section of memory reserved
for holding pattern data created by hold page modules. The
memory allocation is defined in the file HLDBUF.MAR. This
file contains definitions for a four waypoint airway and
four GRPs used as hold waypoints. The format of these
blocks is the same as those used in AADCOM (see section
1.5.1.1). The difference between the AADCOM and HLDBUF
structures is that AADCOM is predefined read-only memory and
HLDBUF is a template filled in holding pattern procedures.

PRECEDING PAGE BLANX NG vi.MED

2ABE (o &\ INTENTIONALLY BLAMK

67

Section 6.1.4 PILOT DEFINED WAYPOINTS (PPT WPT)

The pilot defined waypoint buffer is used to save
information for waypoints created through calls to
the function MAKE WPT. Pilot waypoints are made for
runway selection, aircraft position reference, bearing/
range from reference point, and absolute position
selection. The Fortran allocation is shown below.

STRUCTURE /PPTS/
CHARACTER*5 NAME
BYTE BITS
REAL LAT, LON, ALT, SPD
CHARACTER*16 TEXT

END STRUCTURE

RECORD /PPTS/ PPT WPT (20)

The ".BITS" node of the structure is set to indicate
when altitude and speed have been supplied for the pilot
waypoint. Bit #0 is set for altitude definition and bit
#1 is set for speed definition. The ".TEXT" node is set
to the CDU command string entered by the pilot which
caused the pilot waypoint creation. This text may be
viewed on the NAV DATA page of the CDU.

‘ ~ A ! I" !."“»-Mﬂ;’
PAGE __@J_JNTENHONALLY BLANK prapcENG PAGE BLAYY Nt

69.

Section 6.1.5 THE ROUTE BUFFERS (RTE_MOD/RTE ACT)

The route buffers
There is one for the
modified plan. Each
structure definition

STRUCTURE /RTE/
INTEGER*4 ADDR
BYTE TYPE, CPTR
UNION

MAP
INTEGER*2 RWY
END MAP
MAP
INTEGER*2 EXIT
END MAP
END UNION
END STRUCTURE

are in the global common area CDUCOM.
active flight plan and one for the
has room for 30 route elements. The
is shown below.

RECORD /RTE/ RTE_MOD (30), RTE ACT(30)

The nodes of the structure are described in the following

list.

to the same memory location.

Note that ".RWY" and ".EXIT" are duplicate references

This is because both nodes are

not used for the same route element.

.ADDR Memory address of the route element. May point to
a location in AADCOM, HLDBUF, or PPT WPT.

.TYPE Route element type as follows.
DISCONTINUITY = 0, AIRFIELD = 1, GRP = 2,
NAVAID = 3, PILOT WPT = 4, HOLD PATTERN = 5,
APPROACH = 6, SID = 7, STAR = 8, AIRWAY = 9

.CPTR Constraint buffer index.

.RWY Runway waypoint. l:origin 2:destination

.EXIT Route function offset to exit waypoint address.

)
PAOE__QQQ_MJNTENUONALLY BLANK

PRECEDING PAGE BLANK NOT FILMED

71

Section 6.1.6 THE WAYPOINT BUFFERS (WPT_MOD/WPT_ACT)

The waypoint buffers contain the actual waypoint data
which defines the entire flight plan. WPT ACT is used for
the active flight plan while WPT MOD has the path which
is under modification. WPT MOD is re-created each time
a flight plan change is entered on the CDU. The waypoint
buffer is actually an expansion of the data already exist-
ing in the route buffer. Each route element is replaced
by one or more waypoints having any constraints defined
by CONBUF (see section 1.5.1.2), the cruise altitude, or
AADCOM predefinition. A number of waypoint buffer
parameters are computed from the geometry of the waypoints
taken from the expansion process. This "Path Definition"
phase, performed by the procedure PATHDF, starts when the
expansion process is complete. The structure template of
the waypoint buffers is shown below followed by a
description of each of the parameters.

STRUCTURE /WPTS/
CHARACTER*S5 NAME
BYTE DMA, SOURCE, PHASE, ALTF, SPDF, RADF, FILL
INTEGER*4 RNAV, ETA
REAL LAT, LON, ALT, GS, TIME, CCD
REAL ARC2, DTT, RAD, BRNG, ANGLE, ERAD, PPD
REAL WPV (3), TCV(3), NMV(3)
REAL IAS, TCLAT, TCLON, WSPD, WDIR, MGVR, TDEV, FPA
END STRUCTURE
RECORD /WPTS/ WPT_ACT (30), WPT_ MOD (30)

.NAME Waypoint name.

.DMA 1:DMA turn start, 2:DMA turn stop, else 0.

-SOURCE Index into route buffer indicating the element
the waypoint was expanded from.

.PHASE Phase of flight; l:climb 2:cruise 3:descent
0:undefined

.ALTF Altitude defined flag; 0O:undefined l:explicit
definition (AADCOM, PPT WPT,CONBUF), 2:implicit
defintion (cruise alt,’P0OS’ updatable wpt). If
equal 2, shown in small font on LEGS page.

. SPDF Speed definition flag; see .ALTF

.RADF Radius definition flag; 0:computed l:assigned

.FILL Keeps remaining nodes on long word boundary.

.RNAV Radio navigation aid address pointer.

.ETA Estimated time of arrival (seconds past midnight).

.LAT Waypoint latitude (degq).

. LON Waypoint longitude (deg).

LALT Waypoint altitude (ft).

.GS Waypoint ground speed (kt).

.TIME Leg time from last waypoint (seconds).

.CCD Turn center to turn center distance (ft).

NG PAGE HI AN Jo— :
PAGEQO PRECEDING PAGE BLANX NOT FILMED

~—— INTENTIONALLY (o

._72_

.ARC2 One half turn arc length (ft).

.DTT Distance from waypoint to turn tangent point (ft).

.RAD Turn radius (ft).

.BRNG Inbound leg bearing or DME waypoint bearing (degqg).

.ANGLE Turn angle (deg; -:left +:right)

.ERAD Local earth radius value (ft).

.PPD Point to point distance from last waypoint (ft).

.WPV Farth center to waypoint unit vector.

.TCV Earth center to turn center unit vector.

. NMV Normal unit vector. Perpendicular to plane formed
by earth center, previous, and current waypoints.

. IAS Waypoint airspeed (not used).

. TCLAT Turn center latitude (deg).
. TCLON Turn center longitude (deg).

.WSPD Local wind speed (not used).

.WDIR Local wind direction (not used).

.MGVR Local magnetic variation (deg).

.TDEV Local temperature deviation (not used).
.FPA Leg flight path angle from last waypoint.

A subset of the waypoint buffers is copied into other
waypoint buffers for transmission to the Display VAX.
This is done to save time since I/0O time for 30 copies
of waypoint data is significant. The copying of the data
is performed in the background also to utilize available
"fast loop" processing time. The structure of the display
waypoint buffer is shown below. All the nodes match the
structure described above except for ".CODES". The .DMA,
.ALTF, and .SPDF data mentioned above are packed into one
byte in the display waypoint buffers. Bits 0 & 1 are used
for the DMA index and bits 2 & 3 are used for the altitude
and speed booleans respectively.

STRUCTURE /DWPTS/
INTEGER*4 ETA
REAL LAT, LON, ALT, GS, TIME, CCD, ARC2, DTT, RAD, BRNG
REAL ANGLE, ERAD, PPD, WPV (3)
CHARACTER*5 NAME
BYTE CODES
END STRUCTURE
RECORD /DWPTS/ MOD WPTS(30), ACT_WPTS(30)

73

Section 6.2 FLIGHT PLAN DATA PROCESSING

This section covers the internal operations performed
on the flight plan data buffers. The 23 modules described
here are contained in four files named EXECUTE.FOR,

XLAT RTE.FOR, PATHDF.FOR, CONST.FOR. These modules use

the constraint buffer, navigation database, holding pattern
data, pilot waypoint buffer, and the route buffer to create
a provisional waypoint buffer which, upon pilot acceptance,
becomes the active waypoint buffer.

The various clearance pages of the CDU have three modes
of operation; original clearance, modified clearance, and
active clearance. The current mode is shown with the first
three characters of the title line of clearance pages as
follows.

" " - orignal clearance
"MOD" - modified clearance
"ACT" - active clearance

The original clearance mode is active by default upon
starting the system or when the origin airfield is entered
on the ROUTE page of the CDU. At this time RTE MOD has
the provisional flight plan and RTE ACT is undefined. Once
the original clearance is EXECuted by the pilot the mode
becomes ACT. At this time RTE_MOD and RTE ACT both contain
the active flight plan. When changes are made to the active
plan the CDU mode becomes MOD. RTE ACT will contain the
active flight plan being used by guidance, however the CDU
shows the modified flight plan stored in RTE MOD.

Creation of a new "MOD" waypoint buffer is started when
a CDU page handler receives a flight plan input and calls
the procedure DEMODE. Acceptance of the new flight plan
can be automatic, depending on DEMODE parameters, or may
require pilot interaction. The pilot may however choose to
reject the modified route and return to the last active plan.
These operations are performed by the modules EXECUTE and
REJECT.

._'75_

Section 6.2.1 CONSTRAINT BUFFER USAGE

The constraint buffer is used to store altitude, speed,
and turn radius constraints for route waypoints. The
constraints are entered manually on the CDU through the
LEGS page. The format of this buffer is described in
section 1.5.1.2. Seven procedures perform various oper-
ations on the constraint buffer. Module descriptions of
each are provided on the following pages.

pace ")\ INTENTIONALLY BLAMR PRECHEMAWT PAGE 1A% NG FLUMED

.76

MODULE NAME: CLEAN_CON

FILE NAME: CONST.FOR
PROCESS: SLOW

CALLED BY: EXECUTE, REJECT

CALLING SEQUENCE: CALL CLEAN_ CON

PURPOSE:
To identify unused packets of the constraint buffer.

DESCRIPTION:

This module performs clean-up on the CDU constraint
buffer. When a flight plan is executed or changes to the
active flight plan have been rejected, both the "ACT" and
"MOD" route buffers are identical. At this time "CLEAN CON"
is called to identify which of the 50 constraint buffer
packets of data are actually used. All others are marked as
free for future use while the used packets are flagged as
active constraints.

A 50 byte array of booleans (USED) is initialized as false
(not used). Each ".CPTR" pointer is followed into the linked
list of constraints. As each constraint is found the "active
constraint" bit is set and the corresponding USED byte is set
true. When finished, the first long word of each constraint
packet not denoted as used is cleared to designate it as
available.

GLOBAL REFERENCES:

ARRAYS
CONBUF* CONBYT RTE CNT

RECORD ARRAYS
RTE_MOD

FUNCTIONS AND SUBROUTINES
CLRBUF

=-77-

MODULE NAME: COPY_CON

FILE NAME: CONST.FOR
PROCESS: SLOW

CALLED BY: KILL CON, NEW CON

CALLING SEQUENCE: NEW_INDEX = COPY _CON (OLD_INDEX)

PURPOSE:
To copy a constraint list to other free constraint
buffer locations.

DESCRIPTION:

This function is called to copy a constraint list starting
at the packet indicated by the OLD INDEX input parameter.
The data is copied to free packets in the constraint buffer
and the index of the new list is returned as the function
value.

The linked list pointers are followed and for each
old constraint packet a call to FIND EMPTY is made to get an
available block. The old data is copied to the new locations
and the "active constraint" bit of the new data is cleared.

GLOBAL REFERENCES:

ARRAYS
CONBUF CONBYT

FUNCTIONS AND SUBROUTINES
FIND EMPTY LIBS$MOVC3

78

MODULE NAME: FIND EMPTY

FILE NAME: CONST.FOR

PROCESS: SLOW

CALLED BY: COPY_CON, HLD_POS, NEW_CON
CALLING SEQUENCE: INDEX = FIND EMPTY () -
PURPOSE:

To locate an available constraint packet.

DESCRIPTION:

This function returns the index of the first free packet
in the constraint buffer. The first long word of each
packet is examined until an available set is found (equal 0).
If all 50 constraints are used the CDU error code is set to
#4 and a return to the caller’s caller is performed.

GLOBAL REFERENCES:

VARIABLES
ERCODE*

ARRAYS
CONBUF

FUNCTIONS AND SUBROUTINES
RET

-7 9_

MODULE NAME: GET_CON

FILE NAME: CONST.FOR
PROCESS: SLOW

CALLED BY: RTE, XLAT RTE

CALLING SEQUENCE: GET_CON(RTE_PTR, OFFSET, WPT_PTR)

PURPOSE:
To store constraints into waypeint buffer locations.

DESCRIPTION:

This procedure is called with an index into the route
buffer (RTE PTR) of the route element containing a par-
ticular waypoint. If the route element is a route function
then the database offset is also supplied. Any constraint
data existing for the waypoint is fetched and copied to the
waypoint buffer for the waypoint designated by the parameter
list index WPT PTR. The waypoint buffer flags .ALTF, .SPDF,
and .RADF are set appropriately.

Note that when the route element is a route function, the
constraint buffer contains a linked list which must be
followed until a matching offset value is found or the end
of the list is encountered.

GLOBAL REFERENCES:

ARRAYS
CONBUF CONBYT CONWRD

RECORD ARRAYS -
RTE MOD WPT_MOD*

.80

MODULE NAME: KILL_ CON

FILE NAME: CONST.FOR

PROCESS: SLOW

CALLED BY: NMBRS

CALLING SEQUENCE: CALL KILL CON(WPT_PTR, CODE)
PURPOSE:

To remove one or more constraints from a waypoint.

DESCRIPTION:

This procedure is called to remove one Oor more con-
straints associated with a particular waypoint buffer
waypoint. If the constraint packet is designated as an
active set, a copy of the packet is made and the route
buffer element is redirected to the new copy. The
assignment bits (16-18 of first long word) of the constaint
packet are cleared as indicated by the CODE input parameter.
If the constraint packet becomes null it is removed from
the linked list or the route buffer pointer (CPTR) is
cleared if it were the only constraint packet.

GLOBAL REFERENCES:

ARRAYS
CONBUF CONBYT* CONWRD

RECORD ARRAYS
RTE MOD* WPT_MOD

FUNCTIONS AND SUBROUTINES
COPY CON RTE_WPT WPT_ADDR

81

MODULE NAME: NEW_ CON

FILE NAME: CONST.FOR
PROCESS: SLOW

CALLED BY: NMBRS, XFER CON

CALLING SEQUENCE: variable (see below)

PURPOSE:
To insert waypoint constraints into the constraint buffer.

DESCRIPTION:

This module is called to add a constraint to a waypoint
on the flight plan. The waypoint may have other constraints
already defined. Two calling sequences exist for this
module, as shown below. The module P LIST is used to determine
which calling sequence was used.

CALL NEW_CON(WPT_PTR, V_TYPE, VALUE)
CALL NEW _CON(,V_TYPE, VALUE, RTE_PTR, RTE_OFF)

WPT PTR Index into waypoint buffer of selected waypoint.

V TYPE Type of constraint: 1=altitude 2=speed 3=radius
VALUE Constraint value.

RTE PTR Rte buffer index of rte element owning selected wpt .
RTE_OFF Offset into rte function for rte type waypoint.

The constraint pointer of the route element corresponding
to the selected waypoint is fetched. It is used to determine
if a constraint packet already exists for the waypoint. If
saved constraints for the route element have the "active" bit
set, a duplicate copy is made so modifications may be made.
When the pointer points to a linked list, the links must be
followed to determine the existence of data for a particular
waypoint. When constraint data already exists, the fields of
the packet are simply updated. Otherwise a new packet is
created. When the waypoint is part of a route function
which has other waypoint constraints, the new packet is
inserted into the linked list chain.

GLOBAL REFERENCES:

ARRAYS
CONBUF* CONBYT* CONWRD*

RECORD ARRAYS
RTE_MOD* WPT_MOD

FUNCTIONS AND SUBROUTINES
COPY _CON FIND_EMPTY P_LIST RTE WPT WPT ADDR

82

MODULE NAME: XFER_CON

FILE NAME: CONST.FOR
PROCESS: SLOW

CALLED BY: MERGE, NEW ENTRY

CALLING SEQUENCE: CALL XFER_EON(FROM, OFFSET, TO)

PURPQOSE:
To transfer constraint data.

DESCRIPTION:

This procedure is called to transfer existing waypoint
constraints to another waypoint. Both waypoints must be part
of a route function which is indicated by the route buffer
pointer FROM/TO and the route function offset, OFFSET.

This procedure is used by routines which split a single route
function into a repeated pair of route functions with different
entry/exit points.

GLOBAL REFERENCES:

ARRAYS
CONBUF CONBYT CONWRD

RECORD ARRAYS
RTE_MOD

FUNCTIONS AND SUBROUTINES
NEW_CON

-83-

Section 6.2.2 ROUTE TRANSLATION AND PATH DEFINITION

The modified route buffer (RTE MOD) and other basic
flight plan database elements are combined to form the
provisional waypoint buffer (WPT MOD). The procedures on
the file XLAT_RTE.FOR perform this task. Once the route
buffer has been translated into a basic waypoint buffer, the
path definition procedures contained in the file PATHDF .FOR
are called to create the mathematical constructs associated
with using the waypoint buffer as a guidance buffer. The
translation and definition process is started by a call to
the procedure DEMODE any time a flight plan modification is
made on the CDU. The following pages contain the module
descriptions for these routines.

84

MODULE NAME: CREATE BUF

FILE NAME: EXECUTE.FOR
PROCESS: SLOW

CALLED BY: DEMODE, EXECUTE

CALLING SEQUENCE: CALL CREATE BUF (COUNT, WPT_BUF, DSP_BUF)

PURPOSE:
To move selected portions of the waypoint buffer to the
display waypoint buffer.

DESCRIPTION:

This procedure is called with a waypoint count and one
of the waypoint buffers as inputs. It stores portions of
the waypoint buffer into one of the display waypoint
pbuffers as the sole output parameter.

For each waypoint sixty-eight consecutive bytes of data
starting at the .ETA parameter are moved to the display
puffer. Then the .DMA, .ALTF, and .SPDF data is packed into
the .CODES bytes of the display buffer.

GLOBAL REFERENCES:

FUNCTIONS AND SUBROUTINES
LIBSMOVC3

85

MODULE NAME: DEMODE

FILE NAME: EXECUTE.FOR

PROCESS: SLOW

CALLED BY: FLT TYPE INP, HLD POS, HOLD INPUT,

INTC_WPTS, LINK CMD, MOD ROUTE, NEWCRZ,
ROUTE, TIME_IN, UPDATE POS, WPT_DATA
CALLING SEQUENCE: CALL DEMODE (MODE_ FLAG)

PURPOSE:
To initiate the creation of a new waypoint buffer.

DESCRIPTION:

This procedure is called when a change is made to the
flight plan. If the change is made to the active plan
the CDU demodes to the provisional plan status indicated
by the text "MOD" on the header of clearance pages. DEMODE
initiates the translation of the route buffer to a complete
waypoint buffer. There are three modes of operation for
this module; Auto execute, No execute, and No trim. The
normal sequence occurs for the No execute mode. The active
plan waypoints already over-flown are trimmed away and the
route translation occurs always leaving the CDU in the MOD
plan mode. The No Trim mode is the same as No execute but
the removal of passed waypoints is not performed. If the
changes made to the flight plan do not require final
approval from the pilot through EXEC selection, the Auto
execute mode is used.

The first test in DEMODE determines if the current CDU
mode is "Active". If it is, DEMODE will enable auto execute
if requested, and perform the waypoint trimming by calling
TRIM WPTS. The current destination waypoint pointer PTR2D
is saved to be used later when the pilot executes the
modified plan. Next consecutive route discontinuities are
removed from the route buffer and the route buffer to
waypoint buffer translation is performed through calls to
DSC_CHECK and XLAT RTE respectively. Once the waypoint
buffer is created it is either made active, if Auto execute
is enabled, or several tests are made on the new buffer.

If the modified waypoint buffer WPT MOD starts with at least
two waypoints before any route discontinuity markers the
EXEC light flag is set. Also if the buffer contains any
route discontinuity markers the DSPLY light flag is set.

The final steps of the waypoint buffer creation process
are to create the display waypoint buffer subset and expand
the provisional route to data-link text description if
expansion is enabled. The display buffer is created by
calling CREATE BUF and the transmission to displays is
activated by clearing GDTIME.

-86—

GLOBAL REFERENCES:

VARIABLES
CDU CMD GDTIME* LT DSPY* LT EXEC* MODCNT PMODE* PTR2D

SAVPTR*

ARRAYS
RTE_CNT

RECORD ARRAYS
MOD WPTS RTE_MOD WPT_ MOD

FUNCTIONS AND SUBROUTINES
CREATE BUF DSC_CHECK EXECUTE EXPAND_RTE TRIM WPTS XLAT_RTE

87

MODULE NAME: DSC_WPT
FILE NAME: XLAT RTE.FOR
PROCESS: SLOW

CALLED BY: XLAT RTE, RTE

CALLING SEQUENCE: CALL—DSC_WPT(WPT_INDEX, RTE INDEX)

PURPOSE:
To insert a route discontinuity into the waypoint buffer.

DESCRIPTION:

This subroutine is called to insert a discontinuity
marker into the flight plan. One is inserted only if the
previous waypoint entry was not also a discontinuity marker
and there is room in the waypoint buffer. The discontinuity
is associted with the route buffer via the source index "I".

GLOBAL REFERENCES:

RECORD ARRAYS
WPT MOD*

~-88~-

MODULE NAME: FIND_CCD

FILE NAME: PATHDF .FOR

PROCESS: SLOW

CALLED BY: PATH

CALLING SEQUENCE: CCD = FIND CCD(TO_ADJUST)
PURPOSE::

To compute the CCD parameter in the waypoint buffer.

DESCRIPTION:

The turn center to turn center distance (CCD) differs
from the waypoint to waypoint distance for "Pass By"
waypoints. The adjusment at each end of the leg is
the tangent distance minus half the turn arc length
(DTT-ARC2). The "From Waypoint" adjustment is computed
in this procedure and the "To Waypoint" adjustment is
passed as a parameter to avoid DMA arc entry waypoint
testing.

Checks are made to assure that the leg being processed
has proper geometry at both ends. When the sum of the
tangent distance becomes larger than the point to point
distance a "Bad Radius"™ situation has occured. This
means a "Pass By" turn is to large for the given leg
length. The offending turn radius is set to zero and
the path definition waypoint index is reset to force
the calling module to recompute parameters using the
new turn radius.

GLOBAL REFERENCES:

VARIABLES
ERCODE*

RECORD ARRAYS
WPT_ MOD

89

MODULE NAME: LOCAL_ERAD

FILE NAME: PATHDF .FOR

PROCESS: SLOW

CALLED BY: PATH, NEW POS, POINTS

CALLING SEQUENCE: COMMON /PTHCOM/ LAT FEET, LON_FEET, RAD
CALL LOCAL_ERAD (ALT, SIN_LAT, COS_LAT)

PURPOSE:
To compute local earth radius values.

DESCRIPTION:

This procedure uses the input parameter for waypoint
altitude, and sine/cosine of latitude to compute local
earth radius values. The computed values, returned through
common PTHCOM, are the earth radius to waypoint and the
number of feet per degree of both latitude and longitude.

GLOBAL REFERENCES:

VARIABLES
LAT FEET* LON_FEET* RAD*

-90-

MODULE NAME: PATH

FILE NAME: PATHDF .FOR

PROCESS: SLOW

CALLED BY: PATHDF

CALLING SEQUENCE: CALL PATH (START_INDEX, END_INDEX)
PURPOSE:

To compute flight plan parameters required by guidance
and display software.

DESCRIPTION:

This procedure computes many of the guidance buffer
parameters associated with the aircraft flight plan, which
are contained in the structure "WPT _MOD". Several of the
structure nodes are filled by "XLAT RTE" before calling this
subroutine. The following list shows which parameters of
"WPT MOD" are computed. Some values are not computed for all
waypoints, therefore these exceptions are noted.

WPT_ MOD (I) " .XXX"

LAT waypoint latitude INBOUND DMA WPTS ONLY
LON waypoint longitude INBOUND DMA WPTS ONLY
PPD point to point distance ALL WPTS

DTT distance to tangent ALL WPTS

ARC2 one half arc length ALL WPTS

ANGLE turn angle ALL WPTS

CCD center to center distance ALL WPTS

BRG bearing ALL EXCEPT OUTBOUND DMA
TCLAT turn center latitude ALL EXCEPT INBCUND DMA
TCLON turn center longitude ALL EXCEPT INBOUND DMA
FPA flight path angle ALL WPTS

TIME delta time ALL WPTS

ERAD local earth radius ALL WPTS

WPV waypoint vector ALL WPTS

NMV unit normal vector ALL WPTS

TCV turn center vector ALL WPTS

PATHDF computes the guidance parameters in two passes
through the waypoint buffer. The exact mathematical
concepts invloved with the various parameters are dis-
cussed in Appendix A.

During the first pass the waypoint vectors (WPV), normal
vectors (NMV), point to point distances (PPD), and local
earth radius (ERAD) values are computed for each waypoint.
WPV and ERAD are computed by calls to XYZ and LOCAL_ERAD
respectlvely NMV is the cross product of the current and
prev1ous waypoints WPV vectors. These WPV values are also
used in combination with the ERAD value to compute PPD using
the arc length formula Arc_length = Radius * Angle_ radians.
DMA waypoint repositioning occurs also during the first pass.

91

When PATHDF encounters a DMA entry waypoint, new latitude and
longitude values are computed from the turn center

previously stored as LAT/LON. The old LAT/LON values are
moved to the turn center locations (TCLAT/TCLON). The new
LAT/LON values are found from the turn center position,
bearing from turn center to new position, and the turn

radius which are all fetched from AADCOM and stored by

XLAT RTE prior to calling PATHDF.

The remaining guidance parameters are computed during the
second pass through the waypoint buffer. None of the
parameters for the second pass are computed for the first
waypoint. Several are not assigned for the last waypoint
(ANGLE, ARC2, DTT, TCV, TCLAT, TCLON). There are three
guidance buffer parameters that are handled identically
for all types of waypoints. These are RAD, FPA, and TIME.
For a DMA entry waypoint only the CCD value is computed.

The TCV, CCD, and previous waypoints ARC2 parameters are
computed when the waypoint is a DMA arc exit waypoint. For
standard waypoints the BRNG, CCD, ANGLE, ARC2, DTT, TCV,
TCLAT, and TCLON values are set.

When starting and ending tangent distances (DTT) for a
leg are large enough to overlap, a "Bad Radius" turn exists.
The module FIND CCD makes a zero radius turn at the offending
waypoint and signals PATHDF to recompute guidance parameters
for the new turn radius. The waypoint with the redefined
turn radius appears on the LEGS page of the CDU with an
asterisk.

GLOBAL REFERENCES:

VARIABLES
COS_LAT LAT_FEET LON FEET RAD SIN LAT

RECORD ARRAYS
WPT MOD*

FUNCTIONS AND SUBROUTINES
FIND_CCD GRID LOCAL ERAD MTHS$ASIN MTHS$SASIND MTHSATAN2
MTHSATAND2 SCOSD UVC VCP VDP VMG XYZ

92

MODULE NAME: PATHDF
FILE NAME: PATHDF .FOR
PROCESS: SLOW
CALLED BY: XLAT RTE

CALLING SEQUENCE: CALL PATHDF

PURPOSE:
To initiate path definition computations.

DESCRIPTION:

This subroutine is the main driver of the path definition
process. Calls to "PATH" are made after delimiting groups of
consecutive waypoints in the provisional waypoint structure
"WPT MOD". Usually one call to "PATH" is made for the
entire set of waypoints, however multiple calls are made
when route discontinuities exist in the flight plan. The
effect of this is to make several disjoint path segments in
one waypoint buffer.

GLOBAL REFERENCES:

VARIABLES
MODCNT

RECORD ARRAYS
WPT MOD

FUNCTIONS AND SUBROUTINES
PATH

93

MODULE NAME: RTA TIMES
FILE NAME: XLAT RTE.FOR
PROCESS: SLOW

CALLED BY: XLAT RTE

CALLING SEQUENCE: CALL_RTA_TIMES

PURPOSE:
To set arrival times in the waypoint buffer.

DESCRIPTION:

The Requested Time of Arrival (RTA) waypoint is located
in the waypoint buffer. When the waypoint no longer
exists the RTA parameters are reset. Otherwise the selected
RTA time is assigned to the RTA waypoint and the remaining
waypoint times are set according to the stored leg time
values.

GLOBAL REFERENCES:

VARIABLES
MODCNT RTA INDX* RTA TM RTA WPT*

RECORD ARRAYS
WPT MOD*

94

MODULE NAME: RTE

FILE NAME: XLAT_RTE.FOR
PROCESS: SLOW

CALLED BY: XLAT RTE

CALLING SEQUENCE: CALL—RTE(RTE_INDEX, WPT_ INDEX)

PURPOSE:
To store route waypoints in the waypoint buffer.

DESCRIPTION:

This subroutine is called by "XLAT_RTE" when a route
function is encountered while translating the route buffer.
All the waypoints for a complete route function (both entry
and exit waypoints defined) are placed in the WPT buffer
through calls to "WPT", except for the entry waypoint.
Since the route buffer defines the entry WPT as a separate
route buffer element the entry waypoint will already be placed
in the waypoint buffer when the route function is being
processed. The only thing "RTE" does for the entry waypoint
is the search of the constraint buffer mentioned below.
When the route function is not an airway, the speed,
altitude, and DMA turn information is fetched from the
navigation database (AADCOM). The last processing of each
waypoint consists of calling GET_CON to extract constraint
data. Note that previously stored AADCOM values will be
overwritten if higher priority constraint buffer values
exist.

When a route function’s entry waypoint has not been
defined a discontinuity will already exist in the waypoint
puffer. In this case the exit waypoint only is saved
following the discontinuity. For the reverse situation a
discontinuity is stored after the existing entry waypoint
for the missing exit waypoint. When niether is defined one
discontinuity is placed in the waypoint buffer for the
entire route function.

A distinction is made between airways and other route
functions (SID STAR APPROACH HOLD). Each airway waypoint
is assigned a "cruise" phase of flight and the current
cruise altitude, which may be overridden later during the
constraint buffer fetches. For non-airway route functions,
SIDs are assigned the "climb" phase of flight while others
are set to "descent". The altitude, speed, and turn
radius is fetched from the navigation database (AADCOM)
or the hold buffer (HLDBUF). The turn radius may contain
a zero which is a cue to the path definition routine to
compute the value. The fetched altitude is also used as
a flag. When negative, the current waypoint is a DMA turn
entry waypoint and the following waypoint is a DMA turn
exit waypoint. The DMA bearing and turn angle are also
fetched from the database in these cases.

GLOBAL REFERENCES:

VARIABLES
CRZALT

RECORD ARRAYS
RTE_MOD WPT_ MOD*

FUNCTIONS AND SUBROUTINES
BOUNDS DSC_WPT GET_CON GET_LONG GET_REAL TYPE WPT WPT

95

-06-

MODULE NAME: TRIM WPTS

FILE NAME: EXECUTE.FOR

PROCESS: SLOW

CALLED BY: DEMODE, ADD WPT, DIRECT
CALLING SEQUENCE: CALL TRIM WPTS (NEXT_WPT_INDEX)
PURPOSE:

To remove passed waypoints from the active flight plan.

DESCRIPTION:

This procedure is called to eliminate the beginning way-
points from the route buffer which have already been passed
on the active flight plan. When the deletion splits a
route function a new entry waypoint is created.

The input parameter NEXT_WPT_INDEX points to the end
waypoint in the waypoint buffer of the leg which is to
become the first leg of the route. The route buffer element
corresponding to the waypoint before the chosen waypoint is
examined to determine its type. If the route element is a
single waypoint, all the route elements up to and including
the tested one are removed from the route buffer (RTE MOD)
by calling KILL. When a route function is encountered the
procedure NEW ENTRY is used to split the route function
into the portion that is to be saved. Then the prior
elements are removed by calling KILL.

GLOBAL REFERENCES:

RECORD ARRAYS
RTE MOD WPT_MOD

FUNCTIONS AND SUBROUTINES
BOUNDS KILL NEW ENTRY RTE WPT WPT_ADDR

97

MODULE NAME: WPT

FILE NAME: XLAT RTE.FOR

PROCESS: SLOW

CALLED BY: XLAT RTE, RTE

CALLING SEQUENCE: CALL WPT (RTE_ INDEX, WPT INDEX, ADDR, TYPE)
PURPOSE:

To store waypoint data into the waypoint buffer.

DESCRIPTION:

This subroutine is called to place a waypoint in the next
available position of the modified waypoint buffer (WPT_MOD) .
The following items are stored for each waypoint.

.NAME 5 character WPT name padded with blanks on the right.
.LAT Waypoint latitude position.

.LON Waypoint longitude position.

.RNAV database address pointer to local navaid.

.MGVR Local magnetic variation wvalue.

.SOURCE Index into rte buffer which associates a waypoint
with the rte buffer data that caused its creation.

If the waypoint is a pilot defined waypoint four other items
may be set.

JALT Altitude constraint.
.ALTF Altitude definition flag.
.GS Ground speed constraint.
.SPDF Speed definition flag.

The data is fetched using the input address parameter
which is a pointer into AADCOM, HLDBUF, or PPT WPT. The
TYPE parameter determines how the data is fetched. The .LAT,
.LON, .MGVR, and .SOURCE paramters are set identically for
all types. Other parameters are set as follows.

AIRFIELD: 4 character name / no navaid pointer (0).

GRP: 5 character name / navaid fetched from GRP
block in database (ADDR+14).

NAVAID: 3 character name / navaid reference is self.

PILOT PT: 5 character name / no navaid / alt & spd data
fetched from pilot buffer (PPT WPT). flags

set according to pilot waypoint type, POS,
PPT, or RWY.

_98..

GLOBAL REFERENCES:

VARIABLES
ERCODE*

RECORD ARRAYS
WPT MOD*

FUNCTIONS AND SUBROUTINES
GET _BYTE GET_CHAR GET_LONG GET_REAL GET_WORD MAG VAR

99

MODULE NAME: XLAT RTE
FILE NAME: XLAT RTE.FOR
PROCESS: SLOW
CALLED BY: DEMODE, HLD POS
CALLING SEQUENCE: CALL XLAT RTE
PURPOSE :
To translate the route buffer into a waypoint buffer.
DESCRIPTION:
This subroutine translates the route buffer "RTE MOD"
into the equivalent waypoint buffer "WPT MOD". The route

buffer consists of waypoints, route functions, and route
discontinuity markers. The waypoint buffer contains just
waypoints and discontinuity markers. First, the entire
memory area reserved for WPT MOD is cleared to initialize
all parameters to zero. Once this is finished each item in
RTE MOD is examined to determine the appropriate action to
perform corresponding to its type. The last step is to call
PATHDF to compute flight plan parameters for each waypoint.

The conversion is done by indexing through each element
of the modified route buffer (RTE MOD). If the route
element is a route function the procedure RTE is called to
store the data for each waypoint contained on the route
function. If the element is a discontinuity marker a call
to DSC_WPT is made. The last possibility is a single
waypoint element. The procedure WPT is called to store the
basic waypoint data followed by a call to GET CON to fetch
any ALT/SPD/RAD constraint data. If no altitude constraint
was found in the constraint data the cruise altitude, if
entered, is assigned to the waypoint.

Once stepping through the route buffer is finished a few
miscellaneous operations are performed. The created way-
point buffer is examined to see if takeoff and landing
runways exist. If not the respective runway addresses are
cleared (AIRPTS(2,1), AIRPTS(2,2)). The waypoint buffer
may not end in a discontinuity marker so the buffer is
checked and the discontinuity is removed if present.

Finally, the procedures PATHDF and RTA TIMES are called
to compute the remaining guidance parameters.

GLOBAL REFERENCES:

VARIABLES
CRZALT MODCNT* RTA WPT

ARRAYS
AIRPTS* RTE_CNT

RECORD ARRAYS
RTE_MOD WPT ACT WPT_MOD

FUNCTIONS AND SUBROUTINES
CLRBUF DSC_WPT GET_CON PATHDF RTA TIMES RTE WPT

-101-

Section 6.2.3 EXECUTE/REJECT THE MODIFIED FLIGHT PLAN

When flight plan entries are complete, either for the
original clearance or a modified active plan, the pilot
must choose between executing or rejecting the provisional
flight plan. The EXEC button of the CDU will be lit when
execution is allowed. If pressed, the provisional plan
becomes the new active flight plan. At this time the MOD
buffers will be identical to their active counterparts
(RTE MOD/ WPT MOD - RTE ACT/WPT _ACT) and the CDU clearance
pages will display "ACT" as the first part of their title
line. When the clearance entries were made as modifications
to an existing active flight plan the "Erase" option is
given. The text "ERASE>" appears on the right hand side
of the last display line of the CDU when on the ROUTE,
LEGS, or TIME pages. If the pilot presses the line select
key adjacent the erase prompt, the changes to the clearance
are removed and the "ACT" mode is returned.

Three modules handle execution and rejection of the
provisional flight plan. Their descriptions are provided
on the following pages.

page_ /00 prexmonaLLy suamm
PRACENN D58 @UANK NCT F MED

-102-

MODULE NAME: EXECUTE

FILE NAME: EXECUTE.FOR
PROCESS: SLOW

CALLED BY: CDUEXC, DEMODE

CALLING SEQUENCE: CALL EXECUTE (MODE)

PURPOQOSE:
To activate the current provisional flight plan.

DESCRIPTION:

This procedure activates the provisional flight plan
by copying the MOD route and waypoint buffers to their
ACT counterparts. A number of simple steps are perfomed
when execution is required. They are enumerated below
in the appropriate sequence. Afterward more detailed
explanation is provided for those parts requiring it.

If a "POS" update waypoint starts the new plan, make
one last update of the waypoint by calling UPDATE_POS.

Signal guidance software (HVGUID) that the flight plan is
temporarily invalid by clearing the 2D, 3D, and 4D
guidance flags.

If not called with Auto execute flag, identify next "To"
waypoint and reset some phase of flight flags.

Copy the modified route buffer (RTE_MOD) to the active
pbuffer (RTE_ACT). If a discontinuity is encountered
terminate the plan at that point.

Copy the modified waypoint buffer (WPT_MOD) to the
active (WPT_ACT). Check altitude and speed definitions
at each waypoint to determine possible guidance modes.

Process execution of holding pattern data if entered
by calling HOLD_SET.

Perform cleanup on the constraint buffer by calling
CLEAN_CON.

Enable guidance remode (SETGD = 2).

Save new active data which may be modified on next plan
changes; airfield info, cruise alt, RTA waypoint.

Fetch destination runway information from navigation
database (AADCOM) .

-103-

If not Auto execute mode reset EXEC and DSPLY lights

and set the active guidance waypoint pointer (PTR2D)

to the previously chosen "To" waypoint. Otherwise

check if PTR2D should be set to the active hold waypoint.

Fill in active display waypoint buffer by calling
CREATE BUF and flag display buffer transmission by
clearing GDTIME.

Selecting a "To" waypoint can be complicated. 1If
there was no previous active flight plan the second
waypoint is designated. If there was an active plan
several tests are made. When a current active leg is
part of a holding pattern the last PTR2D index is used
since waypoint trimming is not used for holding pattern
changes (see DEMODE). When trimming was enabled the
pointer is initialized to the second waypoint. However
the second waypoint corresponds to the last active
waypoint when changes to flight plan started. The
airplane may cross waypoints while entries are being
made. When this situation occurs the pointer is advanced
along the flight plan as along as one-to-one correspondence
remains in the following waypoints.

GLOBAL REFERENCES:

VARIABLES
ACTCNT ACTCRZ* ANTLAT* ANTLON* CLBCHNG* COSRH CRZALT
CRZCHNG* DESCHNG* DESCHNGl1* GDTIME* GSA* GUID2D* GUID3D*
GUID4D* HLD2D* LT DSPY* LT EXEC* MODCNT ORGRWY* PMODE*
POSTIME* PTR2D* RTA_INDX RTA PTR* RWYHDG RWYLAT* RWYLEN*
RWYLON* RYELEV* SAVPTR* SETGD* SINRH TST3D* TST4D*

ARRAYS
AIRPTS RTE CNT*

RECORD ARRAYS
ACT_WPTS RTE_ACT* RTE_MOD WPT_ACT WPT_MOD

FUNCTIONS AND SUBROUTINES
CLEAN_CON CREATE_BUF EXIT GET REAL HOLD SET SCOSD UPDATE POS
XLAT RTE B

-104-

MODULE NAME: HOLD_SET

FILE NAME: EXECUTE.FOR
PROCESS: SLOW

CALLED BY: EXECUTE, REJECT
CALLING SEQUENCE: CALL HOLD_SET(MODE)
PURPOSE:

To setup active holding pattern data structures.

DESCRIPTION:

This module is called upon the execution of a provisional
flight plan or the rejection of modifications to an existing
active plan. It determines if a holding pattern exists in
the active flight plan and sets up a pointer to the hold
rFIX' waypoint and also saves its name. One other action is
taken when the pattern is found, which will depend on
whether the call to HOLD SET was made from EXECUTE or
REJECT. On execute, the hold pattern database set up by
hold page software, is saved in local memory. On reject the
saved active database is restored to replace changes that
may have been made to the holding pattern.

GLOBAL REFERENCES:

VARIABLES
ACTCNT HLD PTR* HLD WPT*

ARRAYS
START

RECORD ARRAYS
WPT_ACT

FUNCTIONS AND SUBROUTINES
LIBSMOVC3

-105-

MODULE NAME: REJECT

FILE NAME: EXECUTE.FOR

PROCESS: SLOW

CALLED BY: LEGS, LEGS_TIME, ROUTE
CALLING SEQUENCE: CALL REJECT

PURPOSE:

To remove all changes to the last active flight plan.

DESCRIPTION:
This module is called when the pilot chooses to reject

the changes made to the current active flight plan. The
following information sequentially lists the steps taken
to restore the active flight plan to the MOD buffers.

Set the CDU mode to "ACT" and clear POS update waypoint
flag (if one existed).

Copy the active waypoint buffer into its MOD buffer.
Copy the active route buffer into its MOD buffer.
. Restore holding pattern parameters by calling HOLD SET.

Free unused constraint buffer locations by calling
CLEAN_CON.

Restore miscellaneous flight plan variables; airfields,
cruise alt, RTA waypoint.

Turn off EXEC and DSPLY lights.

. Expand restored route buffer to data-link text buffer
if enabled.

GLOBAL REFERENCES:

VARIABLES
ACTCNT ACTCRZ CDU_CMD CRZALT* LT_DSPY* LT EXEC* MODCNT*
ORGRWY PMODE* POSTIME* RTA_INDX RTA PTR RTA WPT*

ARRAYS
AIRPTS* RTE_CNT*

RECORD ARRAYS
RTE_ACT RTE_MOD* WPT_ACT WPT_MOD*

FUNCTIONS AND SUBROUTINES
CLEAN_CON EXPAND RTE HOLD SET

-107-

Section 6.3 THE FLIGHT PLANNING PAGES

The CDU has numerous ways. of generating and modifying
the aircraft’s flight plan. There are seven CDU pages
dedicated to this purpose, not including the phase of
flight or initialization pages which allow cruise altitude
selection. The following sections give a brief outline
of the usage for each page followed by descriptions of the
software modules used. A detailed functional description
of the CDU clearance pages will be provided in another
document to be provided by NASA’s CDU requirements designer.

PRECEDING PAGE BLA
page__[s INTENTIONALLY BLANK NK NOT FILMED

-109-

Section 6.3.1 THE DEPARTURE/ARRIVAL PAGE

The DEPARTURE/ARRIVAL pages provide the flight crew
with departure and arrival information for the origin and
destination airports or for any other airport in the
navigation database (AADCOM). Also, these pages allow
the flight crew to insert departure and arrival route
elements into the route buffer by pressing the labeled
LSKs.

The DEPARTURE/ARRIVAL INDEX page provides access to the
DEPARTURE subpage and the ARRIVAL subpage, where specific
information about each airport is displayed. On the
DEPARTURE subpage, all SIDs and runways listed in AADCOM
for the selected airport, are diplayed. On the ARRIVAL
subpage, all STARs, approaches and runways for the selected
airport are displayed. <SEL> and <ACT> bugs are displayed
next to the route elements which are part of the current
provisional or active flight plan. Refer to figures 6.1
and 6.2 on the following pages.

N DING PAGE BLANK NOT FILMED
§308_ /00 INTENTIONALLY BLAMK PRECEDING PAY

-111-

DEP/ARR INDEX 1/1

KLFI RETURN>
KWAL ARR>

The Departure and Arrivals
Index Page

(figure 6.1)

e G PAGE BLANK NGT FILMED
PAGE_//D _ INTERTIONALLY BLAMK PRECEDING PAGE BLA

-113-

KWAL ARRIVALS 2/3

STARS APPROACHES

ML3SCL GPSILS
RUNWAYS
WF SX X 04

<D/A INDEX ROUTE>»

The Arrivals Page

(figure 6.2)

'ME_/_/.‘?_\sJNTENTIONALLY BLANK PRECEDING PAGE GLANK NGV FILMED

-115-

MODULE NAME: DA INPUT
FILE NAME: DEPARR.FOR
PROCESS: SLOW
CALLED BY: DEPARR

CALLING SEQUENCE: CALL DA_INPUT

PURPOSE::
To parse CDU data entries for the DEPARTURE or ARRIVAL

page. :

DESCRIPTION:

This subroutine is called when a data entry is detected
while on the DEPARTURE or ARRIVAL subpage. Valid entries
on this page are limited to the following:

. Requesting the DEPARR index page or ROUTE page. If there
is data on the scratch pad, it is reprogrammed back onto
the scratch pad for use by the requested page.

Display NEXT or PREVious section of currently dispalyed
page

- Insert a route element into the flight plan, by calling
MOD_ROUTE, provided that it is not already a part of the
provisional or active flight plan. This is only a valid
data entry when on the DEPARTURE page and the ORIGIN
airfield is shown or when on the ARRIVAL page and the
origin or desination airfield is shown.

. Delete a route function from the provisional or active
flight plan, by calling MOD ROUTE.

GLOBAL REFERENCES:

VARIABLES
DST ERCODE* NUMPGS ORG PASS* PGRQST* SUBPAG*

ARRAYS
ENTRY SIDLINE

FUNCTIONS AND SUBROUTINES
DEL_IN FMTOUT MOD_ ROUTE REPROG SET_SIDLINE

-116-

MODULE NAME: DEPARR

FILE NAME: DEPARR.FOR
PROCESS: SLOW

CALLED BY: CDUEXC
CALLING SEQUENCE: CALL DEPARR
PURPOSE:

To serve as the DEPARTURE/ARRIVAL page executive module.

DESCRIPTION:

This subroutine is the main procedure for the DEPARTURE/
ARRIVAL page software. It performs a few top-level functions
beginning with first pass initialization and the computation
of a few variables used by other modules. Input to the
DEPARTURE/ARRIVAL page is handled by one of two modules,

INDX INPUT or DA INPUT, depending upon which subpage of the
DEPARURE/ARRIVAL page is presently active. This procedure
also monitors the global variable PMODE so that in the event
the execute button is pressed, the subroutine SET_SIDLINE is
called to update the <SEL> and <ACT> bugs on the DEPARTURE

or ARRIVAL subpages. A call to the screen update procedure,
REFRESH DA, is made every time the CDU executive calls DEPARR,
with one exception. When a new subpage has been requested,
the update of the CDU screen is delayed for one pass to allow
time for route function information to be updated.

GLOBAL REFERENCES:

VARIABLES
PAGE PASS* PGINIT* PLAN* PMODE SUBPAG* SUBPGINIT

ARRAYS
ENTRY*

FUNCTIONS AND SUBROUTINES
DA INPUT INDX_INPUT PAGE_COUNT REFRESH DA SET_ SIDLINE

-117-

MODULE NAME: INDX INPUT
FILE NAME: DEPARR.FOR
PROCESS: SLOW
CALLED BY: DEPARR

CALLING SEQUENCE: CALL INDX INPUT

PURPOSE:
To parse CDU data entries for the DEPARTURE/ARRIVAL

INDEX page.
DESCRIPTION:

This subroutine is called when a data entry is detected
while on the DEPARTURE/ARRIVAL INDEX page. The following
list describes the requests which are valid data entries.

display DEPARTURE information for the ORIGIN airfield

display ARRIVAL information for the ORIGIN airfield, for
emergency return.

. display ARRIVAL information for the DESTINATION airfield.

display DEPARTURE or ARRIVAL information for the specified
airfield contained in AADCOM.

Upon receipt of a valid data entry, some initialization
variables are set, including the PAGE variable which is set
to reflect the page number of the requested page.

GLOBAL REFERENCES:

VARIABLES
ADDR DST* ERCODE* ORG* PAGE* SUBPGINIT*

ARRAYS
AIRPTS ENTRY

FUNCTIONS AND SUBROUTINES
DEL_IN LUARP

-118-

MODULE NAME : ITEM ADDR

FILE NAME: DEPARR.FOR

PROCESS: SLOW

CALLED BY: SET_SIDLINE

CALLING SEQUENCE: PATHADDR = ITEM ADDR (ITEM)
PURPOSE:

To return the address in AADCOM of the first SID or
the last STAR or approach in the route buffer.

DESCRIPTION:

This function searches the route buffer for the first
occurrance of a route function of type ITEM. The types
are identified by an integer value where, approach=5,
SID=6, and STAR=7. Because the route buffer may contain
more than one route function of a certain type, the
function searches the buffer, from bottom to top, for the
first SID or the last STAR or approach in the buffer. 1If
searching for a STAR or approach, the search halts when
the item is located. If searching for a SID, then the
search continues if a SID is found to ensure that it is
the first SID in the path.

GLOBAL REFERENCES:

ARRAYS
RTE_CNT

RECORD ARRAYS
RTE_MOD

-119-

MODULE NAME: ITEM_COUNT
FILE NAME: DEPARR.FOR
PROCESS: SLOW

CALLED BY: PAGE _COUNT

CALLING SEQUENCE: NUM = ITEM COUNT (ADDR, OFFST)

PURPOSE:
To determine the number of SIDs, STARs, approaches or
runways which are available at the selected airfield

DESCRIPTION:
This function searches for the end of a list of addresses

of SIDs, STARs, approaches or runways. It begins the search
at location ADDR, increments the search address by the value
contained in OFFST, and continues until it finds a zero

valued address. It returns the computed number of items in

the list.
GLOBAL REFERENCES:

FUNCTIONS AND SUBROUTINES
GET_LONG

-120-

MODULE NAME: MODIFY

FILE NAME: MODIFY.FOR
PROCESS: SLOW

CALLED BY: RT NEW, MOD ROUTE

CALLING SEQUENCE: CALL MODIFY (ADDRESS, TYPE, CLEAR FLG)

PURPOSE:
To place airfield selection into the route buffer.

DESCRIPTION:

This subroutine is called by the Departutes/Arrivals
page of the CDU to make modifications to the flight plan.
Insertions and Deletions of SIDs, STARs, Approaches, and
runways may be requested. Note that insertions become
replacements when the inserted type already exists.

Special processing occurs when the third parameter of
the call list is set. This flag indicates the desire to
return to the departure airfield after takeoff, usually
for emergency situations. A waypoint is created at the
current aircraft position. This waypoint is created as a
10 second update waypoint (see section 1.5.3.2). The
route element selected on the DEP/ARR page is then placed
in the route buffer with a call to WAYPOINT or GROUP and
the remainder of the flight plan is deleted.

If a selected type is a route function a search of the
route buffer is made to find an existing element of the type
passed in the parameter list. If found, the element is
deleted by a call to KILL and inserted by a call to GROUP.

If a match is not found the position of insertion is
determined by the element type. An approach is always
placed as the last element in the buffer. SIDs are first
unless a takeoff runway is present, in which case they are
placed after the two runway waypoints. STARs are placed at
the end unless a touchdown runway is defined. They are
inserted two positions before the end to account for either
two runway waypoints or an approach with its entry waypoint.

Deletions of route functions are requested when the type
parameter is set to "DELETE". The actual type of the route
function is not needed to remove it from the buffer since
the passed address is used to locate the element.

Origin and destination runways have the types "RWY1l" and
"RWYZ2Z". The address parameter contains a pointer to the
navigation database when an insertion is requested. If the
address value is zero a deletion is desired.

GLOBAL REFERENCES:

VARIABLES
ALTCOR ERCODE* GS LAT LON POSTIME* TIME

-121-

ARRAYS
AIRPTS RTE_CNT

RECORD ARRAYS
RTE_MOD

FUNCTIONS AND SUBROUTINES
DEL_RTE GROUP KILL MAKE WPT ORG_RWY REMOVE WAYPOINT

-122-

MODULE NAME: MOD_ROUTE

FILE NAME: DEPARR.FOR

PROCESS: SLOW

CALLED BY: DA INPUT

CALLING SEQUENCE: CALL MOD ROUTE (ITEMNAME, ADDIT)
PURPOSE:

To insert or delete route functions on the DEPARR
page.

DESCRIPTION:

This subroutine searches for a route function, whose
name is given by the input parameter ITEMNAME, in BULK
DATA with a call to LUSID. It then calls MODIFY with the
address and type of the route function to be inserted or
deleted from the provisional or active route buffer. The
boolean input parameter ,ADDIT, specifies whether the item
is to be inserted or deleted. Finally, this routine
calls DEMODE with a parameter of NOEXEC to create the new
waypoint buffer and allow the pilot to execute the new
path.

Note the special case where a route function has been
selected on the ARRIVAL page and the ORIGIN airfield is
shown. This indicates an emergency request to return to
the departure airfield, and some special processing
occurs. The origin airfield becomes the new destination
airfield and the origin and destination airfield flags,
which affect the informational display and input parsing
on the DEPARR page, are updated appropriately.

GLOBAL REFERENCES:

VARIABLES
ADDR DST* ORG* PAGE PASS*

ARRAYS
AIRPTS*

FUNCTIONS AND SUBROUTINES
DEMODE LURWY LUSID MODIFY SET_SIDLINE

-123-

MODULE NAME: PAGE_COUNT
FILE NAME: DEPARR.FOR
PROCESS: SLOW
CALLED BY: DEPARR

CALLING SEQUENCE: CALL PAGE_COUNT

PURPOSE:
To compute the number of subpages required to display
route function information for a selected airfield.

DESCRIPTION:

If the DEPARTURE subpage has been requested, this subroutine
compares the number of SIDs and runways available in BULK
DATA for the selected airfield and chooses the larger of the
two to determine the number of pages required for the DEPARTURE
subpage. If the ARRIVAL subpage has been requested, it
compares the number of STARs with the number of approaches and
runways and chooses the larger of the two to compute the
necessary number of subpages. One page is required to display
five lines of route functions.

GLOBAL REFERENCES:

VARIABLES
ADDR NUMAPP NUMBOTH NUMPGS* NUMSS PAGE

FUNCTIONS AND SUBROUTINES
GET_LONG ITEM COUNT

-124-

MODULE NAME: REFRESH DA

FILE NAME: DEPARR.FOR
PROCESS: SLOW

CALLED BY: DEPARR

CALLING SEQUENCE: CALL REFRESH DA
PURPOSE:

To update the CDU display for the DEPARURE/ARRIVAL pages.

DESCRIPTION:

This subroutine updates the CDU display for the DEPARTURE/
ARRIVAL INDEX page, the DEPARTURES subpage or the ARRIVALS
subpage with calls to FMTOUT. The entire screen is updated
every eight consecutive calls to this subroutine. The value
of PASS determines which particular lines are updated. During
the first call of the cycle, the appropriate page title is
output along with an indication of the current and last page
numbers,

If the DEPARTURE/ARRIVAL INDEX page is currently active,
then the name of the ORIGIN airfield is shown on line #2
along with the labels for the LSKs which provide access to
the DEPARTURE and ARRIVAL subpages. If no ORIGIN airfield
exists in the current provisional flight plan, then blanks
are displayed in place of the airfield name. Likewise, the
name of the DESTINATION airfield is displayed on line #4 along
with the label for the LSK which provides access to the
ARRIVAL page. Again, if no DESTINATION airfield is present
in the current flight plan, then blanks are diplayed in
place of the name. Lines #11 and #12 of the display contain
labels for the LSKs which provide access to the DEPARTURE and
ARRIVAL subpages for information on any airfield contained in
AADCOM.

If either the DEPARTURE or ARRIVAL subpage is currently
active then line #1 will contain headings for the lists of SIDs,
STARs, approaches or runways available at the selected airfield.
Route element information is displayed on lines #2, #4, #6, #8,
and #10. This route element information is contained in the
array, SIDLINE, which is updated by the subroutine, SET_SIDLINE.
Line #11 contains a dashed line, with the label "more" if additional
pages of information are available. Line #12 contains labels for
the LSKs which provide access to the INDEX and ROUTE pages.

GLOBAL REFERENCES:

VARIABLES
ADDR LBL NUMAPP NUMPGS PAGE PASS* SUBPAG

ARRAYS
AIRPTS DASHES SIDLINE

FUNCTIONS AND SUBROUTINES
FMTOUT

-125-

MODULE NAME: SET_SIDLINE

FILE NAME: DEPARR.FOR

PROCESS: SLOW

CALLED BY: DEPARR, DA_INPUT, MOD_ROUTE

CALLING SEQUENCE: CALL SET_STDLINE

PURPOSE:
To format lines of route element information for display

on the DEPARTURE or ARRIVAL page of the CDU.

DESCRIPTION:

This subroutine is called to update the information in
the array SIDLINE, which contains appropriate route element
information for the selected airfield. This information is
displayed by the subroutine REFRESH DA. Each element of the
array SIDLINE is a string of 24 characters and corresponds to
a display line on the CDU. The information contained in
SIDLINE is updated when either the DEPARTURE or ARRIVAL page
of the CDU is initially requested, and whenever the NEXT or
PREVious subpages of the DEPARTURE or ARRIVAL page are
requested.

If the DEPARTURE page is currently active, then the left
side of each line will contain the name of a SID and the
right side of each line will contain a runway number,
available in AADCOM for the selected airfield. If the
selected AIRFIELD is the ORIGIN airfield then <SEL> or <ACT>
bugs will be displayed next to the route elements which are
part of the current provisional or active flight plans. 1If
the current clearance mode is ACT then <ACT> bugs will be
displayed, otherwise <SEL> bugs will be displayed.

If the ARRIVAL page is currently active, the left side of
each line will contain available STARs and the right side
will contain the names of available approaches and runways
for the selected airfield. If the selected airfield is the
DESTINATION airfield then <SEL> or <ACT> bugs will be
appropriately displayed next to route elements which are
present in the current provisional or active flight plans,
again, dependent upon the current clearance mode.

Based on the value of SUBPAGE, this routine determines which
portion of the route element lists should be displayed, and
stores the appropriate names in the array SIDLINE. Also
it sets a flag which tells the subroutine REFRESH DA where
to display the header for the list of runways for a given
airfield. This is not a static position since the runway
header must follow the last approach for a selected airfield.

-126-

GLOBAL REFERENCES:

VARIABLES
ADDR DST NUMAPP NUMBOTH NUMSS ORG PAGE PLAN* PMODE

RWYLABEL* SUBPAG

ARRAYS
AIRPTS SIDLINE*

FUNCTIONS AND SUBROUTINES
GET_CHAR GET LONG ITEM_ADDR

-127-

Section 6.3.2 THE DIRECT/INTERCEPT PAGE

This page is a variation of the LEGS page. The CDU
display is the same except for "Direct To" and "Intercept
Leg" prompts on the bottom. Section 6.3.4 describes the
standard LEGS page and should be referenced to understand
the DIR/INTC page. This section describes the three modules
unique to the DIR/INTC page which are on the file INTC.FOR
(Refer to figure 6.3 on the following page).

Two operations are performed on this page besides the
standard LEGS page functions. The first option creates a
waypoint at the airplanes present position and connects it
to the selected "To" waypoint. If the chosen waypoint is
part of the current flight plan the remaining waypoints
along the path are kept. The second option, like the first,
requires a "To" waypoint entry. Once selected the CDU
screen is updated to prompt for an inbound bearing. A new
waypoint is generated 100 nautical miles away from the
selected waypoint to define a leg with the desired inbound
bearing. Remaining flight plan waypoints are kept for
this operation also.

Note that the pilot defined waypoint created at the
aircraft position is updated every ten seconds to the
current aircraft position until the flight plan is made
active.

-129-

ACT RTE 1/1

1 32°

190/ 4000

L TURN
WFBBC 150/ 4000

353°
WFBBD 130/ 4000

353°
WFBBE 150/ 2723

INTC LEG-

To HRERN

The Direct/Intercept Page

(figure 6.3)

NG PAGE 8. NOT Fi
PAGE/ 3 mrenmionay BLANK PRECEDING PAGE BLANK NOT FILMED

-131-

MODULE NAME: DIRECT
FILE NAME: INTC.FOR
PROCESS: SLOW
CALLED BY: LEGS

CALLING SEQUENCE: CALL DIRECT

PURPOSE:
To create a "Direct To" flight plan.

DESCRIPTION:

This subroutine is called when either a "Direct To" or
"Intercept Leg" entry is made on the DIR/INTC page of the
CDU. The selected waypoint’s name is in the global CDU
entry buffer (ENTRY). Two valid situations may occur. If
the entered waypoint is found on the current flight plan,
all waypoints before the chosen one are removed from the
route buffer and the current aircraft position is inserted
as the "From" waypoint. When the waypoint is not entered
on the current flight plan a two waypoint path is generated
consisting of the current position and the selected waypoint.

A "Direct To" may not be performed to a holding pattern
waypoint. If attempted an error condition is flagged. The
function MAKE_WPT is called to create the waypoint at the
aircraft position. The new waypoint is assigned the current
altitude and ground speed of the aircraft. The "From"
format of the standard legs page is requested once complete.

GLOBAL REFERENCES:

VARIABLES
ALTCOR ERCODE* FROMPG* GS LAT LON MODCNT PGRQST* PMODE
POSTIME* PTR2D TIME

ARRAYS
AIRPTS ENTRY RTE CNT*

RECORD ARRAYS
RTE_MOD* WPT_MOD

FUNCTIONS AND SUBROUTINES
BREAK MAKE WPT OPEN PAD_NAME TRIM WPTS WPT ID

eaee /30 ivEnTionaLLY BuAK PRECEDING PAGE 8LANX NGT FILMED

-132-

MODULE NAME: INTC_MGR
FILE NAME: INTC.FOR
PROCESS: SLOW
CALLED BY: CDUEXC
CALLING SEQUENCE: CALL INTC_MGR
PURPOSE:
To call the LEGS executive requesting the DIR/INTC
variation.
DESCRIPTION:

The only thing done by this module is to call LEGS
with the DIR/INTC parameter.

GLOBAL REFERENCES:

FUNCTIONS AND SUBROUTINES
LEGS

-133-

MODULE NAME: INTERCEPT
FILE NAME: INTC.FOR
PROCESS: SLOW
CALLED BY: LEGS

CALLING SEQUENCE: CALL INTERCEPT

PURPOSE:
To create an "Intercept Leg" waypoint.

DESCRIPTION:

This subroutine is called when the final entry is made
on an "Intercept Leg" creation. The inbound bearing is
decoded from the CDU entry line and used to create a pilot
defined waypoint 100 nautical miles from the previously
selected "To" waypoint. The last "From" waypoint, generated
by DIRECT after the "To" waypoint selection, is replaced
by the new waypoint to form the desired inbound path legqg.

GLOBAL REFERENCES:

VARIABLES
ALTCOR ERCODE* FROMPG* GS PGRQST*

ARRAYS
ENTRY

RECORD ARRAYS
RTE_MOD* WPT_MOD

FUNCTIONS AND SUBROUTINES
FLTVAL MAG VAR MAKE_WPT NEW POS

-135-

Section 6.3.3 THE HOLD PAGE

The HOLD page is used by the flight crew to create a
holding pattern at the present airplane position or at any
waypoint contained in the waypoint buffer (except DME turn
waypoints). When the HOLD key of the CDU is pressed, a
special variation of the LEGS page format, the LEGS-HOLD
page, is displayed. 1If a holding fix is selected, a
variable HLD WPT is assigned the name of the holding fix
and a holding pattern is set up with default parameters,
by calling HOLD_INIT. The holding pattern is inserted into
the provisional route buffer as well as the waypoint buffer
and the HOLD page format is displayed on the CDU. The HOLD
page allows the flight crew to modify the default
parameters of the holding pattern and execute the new
programmed route. Holding pattern parameters which may be
modified include the direction of turns in the holding
pattern, the holding speed and the bearing to the holding
fix. The flight crew may also specify the time required to
fly a straight leg of the holding pattern or the length of a
straight leg in nautical miles (Refer to figure 6.4 and
6.5 on the following pages).

When a holding pattern is created, four points which
comprise the holding pattern are defined and inserted into
the provisional waypoint buffer. The names of the
waypoints which make up the holding pattern are HOLD1,
HOLD2, HOLD3 and HOLD4. These waypoints are inserted into
the path just prior to the position of the holding fix.

The holding fix and the waypoint HOLD1 have the same
latitude, longitude and altitude (if one exists for the
fix) and are combined with the other hold waypoints to
form a path section.

When the autopilot is engaged flying a holding pattern,
the airplane repeatedly flys the holding pattern until a
request is made to exit. Each time the airplane passes
waypoint HOLD4, a check is made in HVGUID to see if a
request has been made to exit the holding pattern,
indicated by EXHOLD. If no request has been made to exit
the holding pattern, the active "to" waypoint pointer is
set back to point to HOLD1l. Otherwise, the holding fix
becomes the active "to" waypoint.

It is possible to create a holding pattern in the
provisional flight plan which differs from the holding
pattern in the active flight plan. Additional bookkeepng
is performed to provide this capability.

: CEDING PLGE B! ANK NOT [ILME
eAGE_/3Y INTENTIGNALLY BLANK PRECEDING PAGE BLANK NOT FILMED

-137-

ACT RTE 1/1

132°

WFBBB 190/ 4000

L TURN

WFBBC 150/ 4000 |
353°

WFBBD 150/ 4000
353
150/ 2723

The Legs Hold Page

(figure 6.4)

PRECEDING PAGE BLANX NGT FILMED
’m_[:gk’ INTENTIONALLY BLAMK

-139-

ACT RTE HOLD 1/1

TGT SPD
210KT

X ETA
1445:00

EXIT TIME

F

<ERASE EXIT HOLD>

The Hold Page

(figure 6.5)

PAGE 258 ANTLRTIUNALLY BLAMK
PRECEDING PAGE BLANK NOT FILMED

-141-~

MODULE NAME: GET_ETA

FILE NAME: HOLD.FOR

PROCESS: SLOW

CALLED BY: HOLD_INPUT, REFRESH HOLD

CALLING SEQUENCE: ETA = GET_ETA

PURPOSE:
To compute the estimated time of arrival (ETA) at the

holding fix.

DESCRIPTION:

This routine computes the ETA at the selected holding
fix. It accumulates the distance to the holding fix by
adding the distance to the next waypoint, DTOGO, to the
distances along each of the legs of the path which lie
between the airplane and the holding fix. It divides
the accumulated sum by the current ground speed in feet
per second and adds the result to the current time. The
ETA is computed and displayed only when the current
clearance mode is ACT, the airplane position is within
the holding pattern and ground speed is greater than zero.

GLOBAL REFERENCES:

VARIABLES
DTOGO GS HLD PTR PMODE TIME TOWPT

RECORD ARRAYS
WPT ACT

PRECEDING PAGE BLANK NGT FILMED

PAGE_/%) INTENTIONALLY BLomy

~142-

MODULE NAME: HOLD_ INIT

FILE NAME: HOLD.FOR

PROCESS: SLOW

CALLED BY: HLD 1IN

CALLING SEQUENCE: CALL HLD INIT (INDEX)
PURPOSE:

To create an initial holding pattern with default
parameters.

DESCRIPTION:

This routine is called from the LEGS-HOLD page when a
holding fix is selected. The input parameter is an index
into the waypoint buffer de31gnat1ng the position of the
holding fix. When this routine is called some flags are
initialized and a holding pattern is created with the
following defaults:

- holding pattern turns are right turns
- inbound course to fix is path bearing at fix waypoint
- hold speed is 210 kts
- if fix altitude is greater than 14000 feet, the
default leg time is 1.5 minutes, otherwise it is 1 minute

This routine calls the the LENGTHS routine to compute the
radius of the holding pattern turns, HLDRAD, and the lengths
of the straight legs of the holding pattern, LEG_LEN. It
calls POINTS to compute the positions of the four waypoints
which define the holding pattern and stores the necessary
values in HLDBUF.

GLOBAL REFERENCES:

VARIABLES
DELHOLD* EXHOLD* HLD_WPT* MODCNT PGINIT*

RECORD ARRAYS
WPT_MOD

FUNCTIONS AND SUBROUTINES
ANGL LENGTHS MTHS$SSIGN POINTS

-143-

MODULE NAME: HOLD INPUT
FILE NAME: HOLD.FOR
PROCESS: SLOW
CALLED BY: HLDWPT

CALLING SEQUENCE: CALL HOLD INPUT (I)

PURPOSE:
To parse CDU data entries for the main HOLD page.

DESCRIPTION:

This subroutine is called when a data entry is detected
while on the HOLD page. Valid entries on this page are
limited to the following:

Deleting the holding pattern from the provisional or
active flight plan.

Echoing the ETA into the scratch pad.
Toggling the turn direction of the holding pattern.
Requesting exit of holding pattern.

Entering a new holding pattern speed, leg length or
leg time.

Cancelling the deletion of or exit from a holding pattern.

Note that once a holding pattern has been executed and flown,
the holding pattern remains on the MAP display, even after it
has been exited. If the HOLD page of the CDU is requested,
the holding pattern information is displayed and the message
"EXIT HOLD PATTERN ARMED" remains on line #12 of the CDU. To
enable removal of the holding pattern from the flight plan
and MAP display, after the holding pattern has been exited,
special input processing has been implemented. The word
"DELETE" may be entered using LSK-L6 or LSK-R6. This displays
the ERASE label for LSK-L6 and therefore allows the holding
pattern to be erased. This required special processing in the
flight plan modification code since "dead" waypoints cannot

be deleted under normal conditions.

~-144-

GLOBAL REFERENCES:

VARIABLES
DELHOLD* ERCODE* EXHOLD* HLDZD* LT EXEC* PMODE PTR2D

TIMED_LEG

ARRAYS
ENTRY

RECORD ARRAYS
WPT_MOD

FUNCTIONS AND SUBROUTINES
ANGL DEL_IN DEMODE FLTVAL FMTOUT FMTTIM GET_ETA KILL
LENGTHS MTHS$SIGN POINTS -

-145-

MODULE NAME: HLD_MGR
FILE NAME: HOLD.FOR
PROCESS: SLOW
CALLED BY: CDUEXC

CALLING SEQUENCE: CALL HLD MGR

PURPOSE:
To call the appropriate HOLD page module.

DESCRIPTION:

This routine determines which HOLD page format should be
displayed and calls the appropriate executive module. The
HOLD page format is displayed only if the variable HLD WPT
contains the name of a fix waypoint, otherwise the LEGS-HOLD
page is displayed. When the HOLD format is required, the
routine HLDWPT is called with the index of the holding fix.
When the LEGS page is required, LEGS is called with a
parameter of 2 to indicate that the HOLD variation of the
LEGS format is to be displayed.

GLOBAL REFERENCES:

VARIABLES
HLD_WPT

RECORD ARRAYS
WPT_MOD

FUNCTIONS AND SUBROUTINES
HLDWPT INDX LEGS

~-146-

MODULE NAME: HLDWPT
FILE NAME: HOLD.FOR
PROCESS: SLOW
CALLED BY: HLD MGR

CALLING SEQUENCE: CALL HLD MGR (INDEX)

PURPOSE:
To serve as the HOLD page executive module

DESCRIPTION:

This subroutine is the main procedure for the HOLD page
software. It performs a few top-level functions including
first pass initialization. The input parameter is an index
into the waypoint buffer designating the position of the
holding fix. Input to the HOLD page is handled by the
module HOLD INPUT. A call to the screen update module,
REFRESH_HOLD, is made every time the HOLD page executive
module, HLDWPT, is called.

GLOBAL REFERENCES:

VARIABLES
PASS* PGINIT¥*

ARRAYS
ENTRY *

FUNCTIONS AND SUBROUTINES
HOLD INPUT REFRESH_HOLD

MODULE NAME: INDX

FILE NAME: HOLD.FOR
PROCESS: SLOW

CALLED BY: HLD MGR, LENGTHS

CALLING SEQUENCE: I = INDX (NAME)

PURPOSE:
To locate the holding fix in the waypoint buffer.

DESCRIPTION:

This function is called with the five character name
of the holding fix waypoint. The waypoint buffer is
searched and the index into the structure is returned.
A zero index is returned when the fix waypoint is not
found in the waypoint buffer.

GLOBAL REFERENCES:

VARIABLES
MODCNT

RECORD ARRAYS
WPT_MOD

-147-

-148-

MODULE NAME: LENGTHS

FILE NAME: HOLD.FOR

PROCESS: SLOW

CALLED BY: HOLD INIT, HOLD INPUT

CALLING SEQUENCE: CALL LENGTHS (TIME, SPD, LEN, RAD)

PURPOSE:
To compute the radius of the turns and the lengths of

the straight legs of the holding patteérn.

DESCRIPTION:
This routine is called on creation of a holding pattern

or when leg time or holding speed are modified by crew
inputs to the CDU HOLD page. The input parameters are the
desired time, in minutes, to fly one straight leg of the
holding pattern and the requested speed in knots. The
length for the straight legs of the holding pattern as well
as a new turn radius for the holding pattern are computed
using the following equations:

i

speed in feet per second * time in seconds
2
(true airspeed + wind speed) /
(gravitational acceleration * tan (nominal bank angle))
GLORAL REFERENCES:

length

radius

VARIABLES
HLD_WPT

RECORD ARRAYS
WPT_MOD

FUNCTIONS AND SUBROUTINES
INDX

~149-

MODULE NAME: POINTS

FILE NAME: HOLD.FOR

PROCESS: SLOW

CALLED BY: HOLD_INIT, HOLD_ INPUT

CALLING SEQUENCE: CALL POINTS(I, RAD, LEGLEN, INCRS, SPD)
PURPOSE:

To create the four waypoints which define a holding
pattern.

DESCRIPTION:

This routine computes the positions of the four waypoints
which define a holding pattern at the selected holding fix.
The input parameters are as follows:

I - an index into the waypoint buffer designating the
position of the holding fix

RAD - the holding pattern turn radius in feet

LEGLEN - the length in feet of one of the holding pattern
straight legs

INCRS - the bearing of the path segment preceeding the
holding fix

SPD - the desired speed for the holding pattern (knots)

For each waypoint, the latitude and longitude are computed
with a call to PROJPOINT. Along with latitude and longitude,
the altitude, speed, turn radius, and associated navaid must
be stored in HLDBUF for use by the path definition modules.
The speed and turn radius are determined by the values of the
input parameters RAD and SPD. The associated navaid is the
the same as that of the holding fix. If the altitude flag in
the waypoint buffer is set for the holding fix, then the
altitude of the hold waypoints are set equal to the altitude
of the holding fix, otherwise the default altitude of 15,000
feet is used. Also, note that the holding pattern turns are
defined as DME turns. The latitude and longitude define the
turn center, and therefore the bearing from the turn center to
the inbound waypoint must be stored, and the altitude must be
negated to indicate that they are inbound waypoints. For the
outbound waypoints, the turn angle must be stored. (see
AADCOM format description for SID/STAR Route functions)

GLOBAL REFERENCES:

RECORD ARRAYS
HLDPTN* HLDPTS* WPT MOD

FUNCTIONS AND SUBROUTINES
ANGL LOCAL_ERAD MTH$SIGN PROJPOINT SCOSD

-150-

MODULE NAME: PROJPOINT

FILE NAME: HOLD.FOR

PROCESS: SLOW

CALLED BY: POINTS

CALLING SEQUENCE: CALL PROJPOINT(PT1, BRG, DIST, PT2)
PURPOSE:

To compute a waypoint latitude and longitude.

DESCRIPTION:

This routine computes the latitude and longitude of a
waypoint given a reference waypoint and a bearing and
distance from that point. It uses LATFT and LONFT which
are created by LOCAL ERAD. The PTS structure is used so
that the computed latitudes and longitudes can be stored
directly into HLDBUF.

GLOBAL REFERENCES:

VARIABLES
LATFT LONFT

FUNCTIONS AND SUBROUTINES
SCOSD

-151-

MODULE NAME: REFRESH HOLD
FILE NAME: HOLD.FOR
PROCESS: SLOW

CALLED BY: HLDWPT

CALLING SEQUENCE: CALL REFRESH HOLD (I)

PURPOSE:
To update the CDU display for the HOLD page.

DESCRIPTION:

This subroutine updates the CDU display for the HOLD page
with calls to FMTOUT. The entire screen is updated every
fourteen consecutive calls to this subroutine. The value of
PASS determines which particular lines are updated. During
the first call of the cycle, the page title is output along
with an indication of the current and last page numbers.
Information about the holding pattern is displayed on lines
#1 through #10. This information includes:

the name of the holding fix

the direction of holding pattern turns

the target speed for the holding pattern

the holding pattern leg time and leg distance

the bearing of the leg which aproaches the holding fix
the estimated time of arrival at the holding fix

the desired holding pattern exit time

The LSK labels which are displayed on line #12 depend upon
current clearance mode. If the current clearance mode is
original or MOD then an ERASE label is displayed on the left
side of this line, if the current clearance mode is ACT then
initially the ERASE label is displayed on the left and EXIT
HOLD is displayed on the right side of this line. 1If the
LSK labelled EXIT HOLD has been pressed then the message,
"EXIT HOLD PATTERN ARMED", will be displayed on line #12,
and if the LSK labelled ERASE has been pressed when the
current clearance mode is ACT then the message, "DELETE
HOLDING PATTERN" will be displayed on line #12.

GLOBAL REFERENCES:

VARIABLES
DELHOLD EXHOLD HLD WPT PASS* PMODE

RECORD ARRAYS
WPT_MOD

FUNCTIONS AND SUBROUTINES
ANGL FMTOUT FMTTIM FSTRNG GET ETA MTHS$SIGN TITLE

-153-

Section 6.3.4 THE LEGS PAGE

The LEGS page of the CDU allows the entry, manipu-
lation, and application of constraints to flight plan
waypoints. Four separate CDU pages actually use the
LEGS page format. The various pages are listed below
along with CDU access information.

LEGS -~ The standard legs page which is accessed by
using the LEGS key or selecting the "<LEGS" option on

the ROUTE INDEX page.

DIRECT/INTERCEPT - This page uses the LEGS format except
for the addition of the box prompts displayed on the
bottom which allow the entry of the destination waypoint,
Once the waypoint is selected this page automatically
transfers to the standard legs page. The DIR/INTC key
is the only access to this page.

HOLD - This page uses the LEGS format only until the hold
waypoint is selected, at which time the hold page uses
its unique page format. The only deviation from the
standard legs page is the box prompts provided for
hold waypoint entry.

FROM WAYPOINT - This page is accessed by selecting the
"<FROM WPT" prompt on the ROUTE INDEX page. This page
differs from the standard legs page in that only the
first waypoint shown. The active LEGS page starts with
the "To" waypoint while the FROM page uses the “From"
waypoint. The modified (MOD) LEGS page starts with
the second flight plan waypoint while the FROM page
uses the first. Both pages are identical in the
initial clearance mode (start with #1) .

Note that any LEGS page operations may be performed while
on the other variations of the LEGS page. Refer to figure
6.6 for a picture of the standard LEGS page.

Individual waypoints may be entered and deleted on the
LEGS page. The altitude, ground speed, and turn radius
constraints associated with the waypoint may also be
entered. As many "sub-pages" as necessary are maintained
to cover the entire flight plan. The current and last
page numbers are shown on the LEGS title line. For a
detailed functional description of the LEGS page refer
to the CDU requirements produced by Charlie Knox of NASA.
The remaining pages of the section explain the 25 modules
associated with the LEGS page. Other sections of this
document must be referenced for information about the
variations of the standard LEGS page.

PAGE_ /S mremmonanyy g - PRECEDING PAGE BLANK NGT FILMED

-155~

ACT RTE LEGS

132° 1T NM

FBBB

L TURN

WFBBC
353°

WFBBD
353°

<INDEX

The Legs Page

(figure 6.6)

FARCERRNG R0 e p AN NGT RO MET,

PACE /5 INTENTIONALLY BLAMK

~157-

MODULE NAME: ADD WPT
FILE NAME: LEGS.FOR

PROCESS : SLOW

CALLED BY: HLD_POS, WPT DATA
CALLING SEQUENCE: CALL ADD WPT (INDEX)
PURPOSE:

To insert a waypoint into the flight plan.

DESCRIPTION:

This procedure adds a waypoint to the flight plan by
creating a waypoint in the route buffer. Three cases must
be accounted for. The waypoint may be appended to the end
of the route buffer, inserted at a route dicontinuity, or
inserted between flight plan waypoints. When inserted
between waypoints that are part of a route function, the
route function must be split into separate parts. This
procedure is also used to update the active "To" waypoint.
When a waypoint which appears further along in the flight
plan is entered at the current "To" waypoint, which is
highlighted in reverse video, the flight plan updated to
reflect the new destination waypoint. All waypoints behind
the new "From" waypoint are removed from the flight plan,
which must be manually activated to become the new active
flight plan.

The subroutine WAYPOINT is called to actually perform
the waypoint insertion. Checks are made prior to calling
WAYPOINT to identify the situations mentioned above. When
the waypoint is inserted within an existing route function
the procedure SPLIT is called to break the route function
at the selected waypoint. The insertion is then made
between the two new route function pieces.

GLOBAL REFERENCES:

VARIABLES
ACTCNT ERCODE* MODCNT PMODE TOWPT

ARRAYS
AIRPTS ENTRY RTE CNT

RECORD ARRAYS
RTE_MOD WPT_ACT WPT MOD

FUNCTIONS AND SUBROUTINES
BOUNDS PAD_NAME RTE WPT SPLIT TRIM

| WPTS WAYPOINT WPT ADDR
WPT ID

h“*.l:@ém! PRECEDING RAGE B' AMNY NGT IUMED

NTENTIONALLY BLANK

-158-

MODULE NAME: ALTX

FILE NAME: LEGS.FOR

PROCESS: SLOW

CALLED BY: FLT TYPE INP, LINK EA, NMBRS, PFINP

CALLING SEQUENCE: ALT = ALTX(TEXT, COUNT)

PURPOQOSE:
To decode altitude entries.

DESCRIPTION:

This function evaluates an ASCII numeric string which
represents an altitude. Note that values entered with
three or less digits are assumed to be flight levels. Any
value greater than 18,000 feet must not have non-zero tens
or ones digits since it will be displayed as a flight level.
The CDU error code value may be set to reflect an "OUT OF
RANGE" or "BAD FORMAT" error. Out of range errors ocuur
when the value is not between 0 and 40,000 feet.

GLOBAL REFERENCES:

VARIABLES
ERCODE

FUNCTIONS AND SUBROUTINES
FLTVAL

~159-

MODULE NAME: BOUNDS

FILE NAME: LEGS.FOR

PROCESS: SLOW

CALLED BY: ADD_PLAN, ADD WPT, HLD IN, KILL WPT,

LINK_PD, MERGE, NEXT_WPT, TRIM WPTS, RTE
CALLING SEQUENCE: CALL BOUNDS (INDEX, IN_OFS,OUT_OFS, STEP)

PURPOSE:
To find entry/exit waypoint offsets.

DESCRIPTION:

This subroutine is called to compute the byte offsets, from
the start of a route function defined in the route buffer, of
the entry and exit waypoint pointers (see section 1.5.1.1 for
database formats). When one of the waypoints is not defined
a zero is returned as its offset. The number of bytes between
consecutive waypoints in the route function is also returned.
Note that the STEP may be a negative value since airways may
be flown in either direction.

The parameter list for BOUNDS consists of one input and
three output values. The first is the index into the route
buffer of the chosen route function. The output parameters
are the entry waypoint offset, exit waypoint offset, and
waypoint separation respectively.

GLOBAL REFERENCES:

RECORD ARRAYS
RTE_MOD

FUNCTIONS AND SUBROUTINES
ENTRY WPT

MODULE NAME: DSP_WPTS
FILE NAME: LEGS.FOR
PROCESS: SLOW
CALLED BY: LEGS

CALLING SEQUENCE: CALL DSP_WPTS (PAGE_1ID)

PURPOSE:
To create CDU display data for the LEGS page.

DESCRIPTION:

This subroutine is called to update the CDU display
screen with the information pertinent to the "LEGS" page
of the CDU. The entire screen is updated every six
consecutive calls to this procedure. During the first call
of the cycle the title line and fixed labels are generated.
On subsequent calls the waypoint information for one of the
five available slots on the screen is updated.

Waypoint information is shown on CDU line pairs starting
with #2/#3 and ending with #10/#11. Three different things
can occupy a line pair. The lines are blanked when finished
with waypoint buffer elements. A route discontinuity marker
is shown for positions which correspond to a break in the
flight plan. Lines that show waypoint data have the way-
point name, speed, altitude, inbound bearing, and inbound
leg distance. Other information appears with the waypoint
data at certain times. The "<CTR>" bug is shown on the
map center waypoint during Plan mode. The waypoint radius
override symbol "R" is placed on waypoints which have a
manually entered turn radius. The waypoints which were
assigned a zero turn radius because of bad flight plan
geometery are indicated by the "*" symbol. When the
displayed waypoint is the "To" waypoint of the active
flight plan the name is shown in reverse video and the
inbound distance is from the airplane, not the previous
waypoint.

Note that the altitude and speed fields may be dashed
when their respective constraints are undefined. When
shown, the values may be either small or large font
depending on the constraint type. The description for
the module XLAT RTE discusses constraint types.

-161-

GLOBAL REFERENCES:

VARIABLES
CTR DTOGO FIRST PTR LASTPG MODCNT PAGE PASS* PLANM PMODE

TOWPT

ARRAYS
BOXES

RECORD ARRAYS
WPT MOD

FUNCTIONS AND SUBROUTINES
FMTOUT FSTRNG HLD END INBOUND INTC_END LEG _END STEPS TITLE

-162-

MODULE NAME:

FILE NAME:
PROCESS:

CALLED BY:
CALLING SEQUENCE:

PURPOSE:

HLD_END
LEGS.FOR
SLOW
DSP_WPTS
CALL HLD_END

To create CDU display labels for the LEGS page.

DESCRIPTION:

This procedure updates CDU display lines #11 and $12
for the HOLD variation of the LEGS page. The "HOLD AT"
query is placed on line #11. Line #12 contains the
box prompts and "PPOS>" response which may be selected
using either LSK-L6 or LSK-R6.

GLOBAL REFERENCES:

ARRAYS
BOXES

FUNCTIONS AND SUBROUTINES

FMTOUT

-163-

MODULE NAME: HLD 1IN

FILE NAME: LEGS.FOR

PROCESS: SLOW

CALLED BY: HLD_POS, WPT DATA
CALLING SEQUENCE: CALL HLD_IN(WPT INDEX)
PURPOSE:

To initiate the processing of a selected hold waypoint.

DESCRIPTION:

This procedure is called when a holding pattern is
requested on the LEGS-HOLD page. The input parameter is an
index into the waypoint buffer designating the selected way-
point. If the parameter is zero the waypoint buffer is
searched for the name stored on the global CDU entry line,
ENTRY. The procedure HOLD INIT is called to create the
holding pattern waypoints in HLDBUF. If the hold waypoint
is part of a route function the route function waypoints
are separated into two pieces by calling the procedure
SPLIT. The holding pattern, which consists of an entry
waypoint and a hold route function, is inserted before the
hold waypoint in the route buffer. The last step is to
automatically signal the CDU executive to perform a page
change to the hold page display.

GLOBAL REFERENCES:

VARIABLES
ERCODE* HLD WPT* MODCNT PGRQST* START

RECORD ARRAYS
RTE_MOD* WPT MOD

FUNCTIONS AND SUBROUTINES
BOUNDS HOLD INIT OPEN PAD NAME RTE WPT SPLIT WPT ADDR

-164-

MODULE NAME: HLD_POS
FILE NAME: LEGS.FOR
PROCESS: SLOW
CALLED BY: LEGS

CALLING SEQUENCE: CALL HLD_ POS

PURPOSE: |
To create a holding pattern at present position.

DESCRIPTION:

This subroutine inserts a holding pattern about the
airplane’s present position on the flight plan. A "PPOS"
entry is simulated to create the "hold waypoint" in the
route buffer by calling ADD WPT. The route discontinuity
generated from the call is removed and aircraft altitude
and ground speed are set up as constraints. A new waypoint
buffer is created by calling XLAT RTE which is used when
HLD IN is called to create the holding pattern at the new
PPOS waypoint.

GLOBAL REFERENCES:

VARIABLES
ALTCOR ERCODE* GS PMODE STRING* TOWPT

ARRAYS
CONBUF* ENTRY*

RECORD ARRAYS
RTE _MOD* WPT_MOD

FUNCTIONS AND SUBROUTINES
ADD WPT DEMODE FIND EMPTY HLD_IN KILL XLAT_RTE

-165-

MODULE NAME: INBOUND

FILE NAME: LEGS.FOR

PROCESS: SLOW

CALLED BY: DSP_WPTS

CALLING SEQUENCE: CALL INBOUND (WPT INDEX, BRG_ TEXT)
PURPOSE:

To generate bearing text for LEGS display.

DESCRIPTION:

This subroutine creates ASCII text for display in the
inbound bearing field of the LEGS page. The created
character string will have "TURN" for outbound DMA way-
points. Other type will have a number, up to three digits,
with a degree symbol. Note that the bearing saved in the
waypoint buffer for DMA inbound waypoints is perpendicular
to the actual inbound bearing.

GLOBAL REFERENCES:

RECORD ARRAYS
WPT_ MOD

FUNCTIONS AND SUBROUTINES
ANGL FSTRNG MTHS$SIGN

-166-

MODULE NAME: INTC_END

FILE NAME: LEGS.FOR
PROCESS: SLOW

CALLED BY: DSP_WPTS
CALLING SEQUENCE: CALL INTC END
PURPOSE:

To create CDU display labels for the LEGS page.

DESCRIPTION:

This procedure updates lines #11 and #12 of the CDU
display screen when the DIR/INTC version of the LEGS
page is shown. Two distinct formats are used for this
page depending on the status of the global flag INTCF.
This happens because the DIR/INTC page requires a user
response after the initial DIR/INTC selection. The
normal display shows the "direct to" and "intercept leg"
prompts. When the intercept leg choice is selected
the lines are updated with the intercept course prompt.

GLOBAL REFERENCES:

VARIABLES
INTCF

ARRAYS
BOXES DASHES

FUNCTIONS AND SUBROUTINES
FMTOUT

-167-

MODULE NAME: KILL WPT

FILE NAME: LEGS.FOR

PROCESS: SLOW

CALLED BY: WPT DATA

CALLING SEQUENCE: CALL KILL_WPT (WPT_ INDEX)
PURPOSE:

To remove a waypoint from the flight plan.

DESCRIPTION:

This subroutine removes a waypoint from the flight plan
by modifying the route buffer. When the waypoint is not
part of a route function it is simply replaced by a route
discontinuity marker. Otherwise the route function which
contains the waypoint must be split into two pieces that
contain the preceeding and following waypoints.

In the case of the route buffer element being a single
waypoint a test is made on the following route buffer
element. If it is a route function the deleted waypoint was
its entry waypoint. The module NEXT WPT is called to make
the next route function waypoint in sequence the new entry
waypoint. The same tests are made when the exit waypoint of
a route function is deleted. The waypoint may have also
served as the entry waypoint of a following route function
in which case the NEXT WPT call is required. When the exit
waypoint is deleted the previous waypoint on the flight plan
is used as the new exit, unless it has an undefined entry
waypoint. A route function with an undefined entry gene-
rates a single waypoint in the waypoint buffer (the exit),
so the exit deletion creates a null route function (undefined
entry and exit). If the route function has been reduced to a
one waypoint route function, having the same entry and exit
points, the route function is deleted and the entry waypoint
remains followed by a route discontinuity. All other cases
of removing a route function waypoint are handled by the
procedure SPLIT.

GLOBAL REFERENCES:

VARJABLES
ERCODE* MODCNT

ARRAYS
RTE CNT

RECORD ARRAYS
RTE_MOD* WPT MOD

FUNCTIONS AND SUBROUTINES
BOUNDS BREAK NEXT WPT OPEN RTE_WPT SPLIT WPT ADDR

-168-

MODULE NAME: LEGS

FILE NAME: LEGS.FOR

PROCESS: SLOW

CALLED BY: HLD MGR, INTC_MGR, LEG_MGR
CALLING SEQUENCE: CALL LEGS (PAGE_1ID)
PURPOSE:

To serve as the LEGS page executive module.

DESCRIPTION:

This procedure is called from the various LEGS format
managers to handle function and data entries, and generate
the data for the CDU LEGS page display. The one input
parameter identifies the calling manager module, which is
used to select the minor variations in the LEGS page format.

The first time the LEGS page is called after a change
from another page format, some initialization is performed.
The LEGS subpage is set to one unless returning from the
LEGS-TIME page. In that case the subpage remains the same
as it was on the LEGS-TIME page. Other LEGS variables are
set to their default values.

A number of independent operations are performed in the
body of the procedure. The following is a sequential list
describing the functions.

If the CDU clearance mode has changed to active, change
from "FROM" format to standard.

Call SET PG to set up LEGS page parameters.

Determine if the Plan Mode LEGS format is to be used. In
this mode the navigation display format is centered at

the waypoint marked with the "<CTR>" bug on the CDU. This
format of the LEGS page is only shown when the NAV display
is in Plan mode and the standard LEGS page is being used.
Note that on the first pass of Plan mode the "<CTR>" bug
is set to the last selected map center waypoint (see the
module description for CDUFST).

Respond to the following function entries.
Advance/Backup to next subpage.
Advance/Backup "<CTR>" bug (Plan mode only).
Calls NEWCTR.
Change to ROUTE INDEX page (Standard LEGS only).
Hold at PPOS (HOLD page only). Calls HLD POS.
Reject modified flight plan (standard LEGS only).
Echo waypoint name to scratch pad. Calls WPNAME.
Echo ALT/SPD constraints to scratch pad. Calls
PROG_NUM.

Respond to data entries by calling WPT_DATA.

Update display lines by calling DSP_WPTS.

-169-

GLOBAL REFERENCES:

VARIABLES
CTR* DISPST ERCODE* FROMPG* INTCF* LASTPG LATCEN LONCEN
MODCNT PAGE* PASS* PGINIT* PGRQST* PLANM PMODE

ARRAYS
ENTRY* OLDPAGE

RECORD ARRAYS
WPT MOD

FUNCTIONS AND SUBROUTINES
DSP_WPTS HLD POS NEWCTR PROG_NUM REJECT SET PG WPNAME
WPT DATA -

-170-

MODULE NAME: LEG_END

FILE NAME: LEGS.FOR
PROCESS: SLOW

CALLED BY: DSP_WPTS
CALLING SEQUENCE: CALL LEG END
PURPOSE:

To create CDU display labels for the LEGS page.

DESCRIPTION:

This subroutine is called to update lines #11 and #12
of the CDU display screen when in the standard LEGS format.
The reference time of arrival and RTA waypoint name are
shown in the middle of lines #11 and #12 when defined. The
prompts "<INDEX" and "ERASE>" are placed on the outside of
line #12 to identify the use of LSK-L6 and LSK-R6. The
erase prompt is only shown during the MOD CDU clearance
mode.

GLOBAL REFERENCES:

VARIABLES
PMODE RTA INDX RTA TM

RECORD ARRAYS
WPT MOD

FUNCTIONS AND SUBROUTINES
FMTOUT FMTTIM

-171~

MODULE NAME: LEG_MGR

FILE NAME: LEGS.FOR
PROCESS: SLOW

CALLED BY: CDUEXC
CALLING SEQUENCE: CALL LEG MGR
PURPOSE:

To call the LEGS page module with standard format.

DESCRIPTION:

Since the standard legs format is used by several pages
the main LEGS procedure must be called with a parameter
indicating specific format. When the executive wishes to
activate the standard legs format it calls the procedure
LEG MGR which in turn calls LEGS with a parameter value
of "1".

GLOBAL REFERENCES:

FUNCTIONS AND SUBROUTINES
LEGS

~-172-

MODULE NAME: NEWCTR

FILE NAME: LEGS.FOR
PROCESS: SLOW

CALLED BY: LEGS

CALLING SEQUENCE: CALL NEWCTR (STEP)
PURPOSE:

To move the "<CTR>" bug on the LEGS page.

DESCRIPTION:

The "<CTR>" bug is moved STEP increments on the display.
Note that STEP may be negative to "step back" or zero to
force the page computation mentioned below. The bug will
wrap around the ends of the flight plan. Also another
STEP is performed when the new placement is on a route
discontinuity. The navigation display format map center
variables are set to the position of the new "<CTR>" way-
point. The last action is the computation of the CDU
LEGS page which contains the "<CTR>" waypoint. This is
performed because the bug may be STEPed off the current
page.

GLOBAL REFERENCES:

VARIABLES
CTR FIRST PTR GDTIME* LATCEN* LONCEN* MODCNT PAGE*

RECORD ARRAYS
WPT_MOD

~173-

MODULE NAME: NEW_ENTRY

FILE NAME: LEGS.FOR

PROCESS: SLOW

CALLED BY: NEXT WPT, SPLIT, TRIM WPTS

CALLING SEQUENCE: CALL NEW_ENTRY (RTE PTR, WPT ADR,
RTE_OFF, EXIT OFF)

PURPOSE:

To define a new route function entry waypoint.

DESCRIPTION:

This module sets up a new route function entry waypoint.
The route buffer index for the new entry waypoint is passed
as RTE PTR. The waypoint’s database address and route
offset are also provided from the parameter list. The
last paramter in the list is the offset of the exit way-
point.

A check is made to determine if the new route entry
waypoint is the same as the route exit waypoint. If so,
the route function is removed to leave the entry waypoint
only. Any waypoint constraints (ALT/SPD/RAD) are extracted
from the constraint buffer and assigned to the new waypoint.

GLOBAL REFERENCES:

RECORD ARRAYS
RTE_MOD*

FUNCTIONS AND SUBROUTINES
KILL TYPE _WPT XFER CON

-174-

MODULE NAME: NEXT_ WPT

FILE NAME: LEGS.FOR

PROCESS: SLOW

CALLED BY: KILL WPT

CALLING SEQUENCE: CALL NEXT WPT (INDEX)
PURPOSE:

To modify a route function when its entry waypoint is
deleted.

DESCRIPTION:

When the entry waypoint of a route function is deleted
a route discontinuity is inserted before the route function
and a new entry waypoint is selected. The new entry is
set up by a call to NEW ENTRY.

When the route function does not have an exit waypoint
defined, its definition only creates one waypoint, the entry,
in the waypoint buffer. When the entry waypoint is deleted
the route function is null, having neither an entry nor an
exit waypoint.

GLOBAL REFERENCES:

RECORD ARRAYS
RTE_MOD

FUNCTIONS AND SUBROUTINES
BOUNDS BREAK GET LONG KILL NEW_ENTRY OPEN

-175-

MODULE NAME: NMBRS

FILE NAME: LEGS.FOR

PROCESS: SLOW

CALLED BY: LEGS

CALLING SEQUENCE: CALL NMBRS (WPT INDEX)
PURPOSE:

To decode constraint data entries for the CDU LEGS page.

DESCRIPTION:

This module is called to decode the numeric constraint
value input for the waypoint indicated by the input
parameter WPT INDEX.

The data may be either speed, altitude, or turn radius
information. Speed and altitude values may be entered on
any display line containing a waypoint name. Turn radius
values may only be assigned to waypoints not used in DMa
turns. The five valid entry formats are shown below. The
"nnn" depicts a one or more character numeric string.

nnn/nnn Speed/Altitude entry

nnn Altitude entry
nnn/ Speed entry

/nnn Altitude entry
R/nnn Turn radius entry

To delete the manually assigned speed and altitude entries
at a waypoint use the LSKs to direct the DELETE text
from the scratch pad to the chosen waypoint. Entering "R/"
at a particular waypoint removes a manually entered turn
radius.

Note that constraints may not be assigned to holding
pattern waypoints.

GLOBAL REFERENCES:

VARIABLES
ERCODE* INDAT MODCNT

ARRAYS
ENTRY

RECORD ARRAYS
WPT_ MOD

FUNCTIONS AND SUBROUTINES
ALTX DEL IN FLTVAL KILL CON LIBSMATCHC NEW CON

-176-

MODULE NAME:
FILE NAME:
PROCESS:
CALLED BY:

CALLING SEQUENCE:

PURPOSE:

PAD_NAME

LEGS.FOR

SLOW

ADD WPT, DIRECT, HLD_IN
NAME = PAD NAME()

To append blanks to the entered waypoint name.

DESCRIPTION:

PAD NAME returns a five character ASCII string which is
set to the name in the CDU entry line padded with blanks
on the end. If the initial data is longer than five

GLOBAL REFERENCES:

YVARIABLES
ECHARS

ARRAYS
ENTRY

-177-

MODULE NAME: PROG_NUM
FILE NAME: LEGS.FOR
PROCESS: SLOW
CALLED BY: LEGS

CALLING SEQUENCE: CALL PROG_NUM

PURPOSE:
To echo altitude and speed values to the CDU scratch pad.

DESCRIPTION:

This procedure is called when the LSK adjacent to a way-
point’s altitude and speed values is pressed. The values
are echoed to the scratch pad as if manually entered, which
allows their use elsewhere. PROG NUM calls FMTOUT to
perform the actual scratch pad update after the ASCII data
is encoded from the waypoint buffer.

GLOBAL REFERENCES:

VARIABLES
ERCODE* FIRST PTR MODCNT PAGE

ARRAYS
ENTRY

RECORD ARRAYS
WPT MOD

FUNCTIONS AND SUBROUTINES
FMTOUT ISTRNG

-178-

MODULE NAME: SET_PG

FILE NAME: LEGS.FOR

PROCESS: SLOW

CALLED BY: LEGS, LEG_TIME
CALLING SEQUENCE: CALL SET PG (FROM FLAG)
PURPOSE:

To set LEGS page parameters.

DESCRIPTION:

The waypoint buffer index of the waypoint shown on the
first position of LEGS page #1 is set. The decision depends
on the current CDU clearance mode and the "From" variation
status. The chart below shows the chosen index.

CLEARANCE MODE VALUE (regular) VALUE ("From")
Active "To" wpt "From" wpt
Modified 2 1
Original 1 1

The number of pages required to show all the waypoints
is also computed by SET PG.

GLOBAL REFERENCES:

VARIABLES
FIRST PTR LASTPG* MODCNT PMODE TOWPT

-179-

MODULE NAME: SPLIT

FILE NAME: LEGS.FOR

PROCESS: SLOW

CALLED BY: ADD WPT, HLD IN, KILL WPT

CALLING SEQUENCE: CALL SPLIT (INDEX, IN,QUT,OFFSET, STEP, FLG)
PURPOSE:

To break a route function into two pieces.

DESCRIPTION:

This procedure is called when operations are performed
on waypoints within route functions defined in the route
buffer. The existing route function must be split into two
pieces at the selected waypoint.

The call list to SPLIT consists of six input parameters.
The first is the index into the route buffer of the selected
route function. The memory offsets to the entry and exit
waypoint pointers are next. The fourth parameter is the
memory offset to the "split" waypoint. The number of bytes
between consecutive route function waypoints is provided
through the fifth parameter. Note that the waypoint step
value may be negative. The last parameter is a boolean
variable used to request the deletion of the "split" way-
point.

A route function is made out of the first piece of the
"split" by inserting a copy of the original route function
in the previous route buffer slot. The exit waypoint of the
new pieces is set to the waypoint one step behind the
"split" waypoint. If the new route function has the same
entry and exit points the copy is not created since the
already defined entry waypoint is sufficient for the first
piece of the split. :

If the "split" waypoint is removed, a route discontinuity
replaces the waypoint. In either case a new position in the
route buffer is opened to hold the entry waypoint for the
second part of the "split" route function. When the second
part will contain only one waypoint the new entry waypoint
is all that is needed. 1In this case the original route
function is removed from the route buffer. The module
NEW_ENTRY is called to set-up the second piece.

GLOBAL REFERENCES:

RECORD ARRAYS
RTE_MOD

FUNCTIONS AND SUBROUTINES
BREAK GET_LONG NEW_ENTRY OPEN

-180-

MODULE NAME: STEPS
FILE NAME: LEGS.FOR
PROCESS: SLOW
CALLED BY: DSP WPTS

CALLING SEQUENCE: CALL STEPS

PURPOSE:
To create CDU display labels for the LEGS page.

DESCRIPTION:

This procedure updates CDU display lines #11 and #12
for the Plan mode LEGS page. Line #11 is completely
dashed. The "step up"/ "step down" prompts are placed
on line #12.

GLOBAL REFERENCES:

ARRAYS
DASHES

FUNCTIONS AND SUBROUTINES
FMTOUT

-181-

MODULE NAME: WPNAME

FILE NAME: LEGS.FOR
PROCESS: SLOW

CALLED BY: LEGS, LEG _TIME
CALLING SEQUENCE: CALL WPNAME
PURPOSE:

To echo a waypoint name to the scratch pad line.

DESCRIPTION:

This procedure performs the scratch pad programmimg of
selected waypoint names. When one of the waypoints shown
on the LEGS or LEGS-TIME pages is selected by pressing the
adjacent line select key (LSK), this subroutine is called
to enter the waypoint name into the CDU scratch pad for
use as an entry elsewhere.

Error messages are signaled when a line with a route
discontinuity or not containg a waypoint is selected.

GLOBAL REFERENCES:

VARIABLES
ERCODE* FIRST PTR MODCNT PAGE

ARRAYS
ENTRY

RECORD ARRAYS
WPT_MOD

FUNCTIONS AND SUBROUTINES
FMTOUT

-182-

MODULE NAME:
FILE NAME:
PROCESS:
CALLED BY:

CALLING SEQUENCE:

PURPOSE:

WPT ADDR

LEGS .FOR

SLOW

ADD PLAN, ADD WPT, HLD_IN, KILL_CON,
KILL WPT, LINK PD, NEW _CON, TRIM WPTS
ADDRESS = WPT ADDR(WPT_NAME) -

To initiate a database search for a waypoint.

DESCRIPTION:

This procedure is called with the name of a waypoint
from the waypoint buffer. The waypoint must not be a

HOLD waypoint.

The actual search is performed by calling

the procedure WPT_ID.

GLOBAL REFERENCES:

VARIABLES

ERCODE* STRING*

ARRAYS
ENTRY *

FUNCTIONS AND SUBROUTINES

RET WPT_ID

-183-

MODULE NAME: WPT_ DATA
FILE NAME: LEGS.FOR
PROCESS: SLOW
CALLED BY: LEGS

CALLING SEQUENCE: CALL WPT_DATA (PAGE ID, FROM_FLG)

PURPOSE:
To parse CDU data entries for the LEGS page.

DESCRIPTION:

This procedure is called when a data entry is detected
while on the LEGS page. There are two input parameters to
the module. The first is an index indicating which version
of the LEGS page is active (Standard, Hold, Dir/Intc). The
second parameter signals when the "From Waypoint" format is
being used. The following list describes the different wvalid
data entries.

A request to transfer to the ROUTE INDEX page. The data
on the scratch pad was not intended for the LEGS page so
it is reprogrammed back into the scratch pad for use by
the ROUTE INDEX page. (Standard format only)

Create a provisional holding pattern by calling HLD IN.
(Hold format only).

Generate a "direct to" leg by calling DIRECT. (DIR/INTC
format only).

Generate a "bearing intercept" leg by calling INTERCEPT
or DIRECT depending on status of entries. (DIR/INTC
format only).
Parse constraint entries by calling NMBRS.
Delete flight plan waypoint by calling KILL WPT.
Insert flight plan waypoint by calling ADD WPT.
After any flight plan modifications which did not set an
error condition, the module DEMODE is called to generate
the new "MOD" waypoint buffer.
GLOBAL REFERENCES:

VARIABLES
ERCODE* FIRST PTR INTCF* PAGE PGRQST*

ARRAYS
ENTRY

FUNCTIONS AND SUBROUTINES
ADD WPT DEL_IN DEMODE DIRECT HLD IN INTERCEPT KILL WPT
NMBRS REPROG

-185-

Section 6.3.5 THE LEGS TIME PAGE

This page is used to select the Reference Time of
Arrival (RTA) waypoint. The page is accessed through
the ROUTE INDEX page. The flight plan waypoints appear
on the left side of the display pages followed by the
defined ground speed constraint and the assigned arrival
time. When a RTA waypoint has not been selected the
arrival time fields contain dashes. To designate a RTA
waypoint a time is keyed on the scratch pad line and
entered at the desired waypoint with one of the LSKs on
the right hand side of the CDU display. The format for
the time entry is "HHMM.SS". The ".SS" field is optional.
The line containing the RTA waypoint has the "RTA" symbol
placed on its line.

Note that the current time of day is always displayed
on the bottom of the page for reference. Refer to figure
6.7 for the format of the LEGS TIME page.

The remainder of this section provides the descriptions
of the four LEGS TIME modules which reside on the file
LEG_TIME.FOR.

PRECEDI*3 PAGE BLANK NOT FILMED
A0S/ &/ INTENTIONALLY BLANK 3 PAG

-187-

ACT RTE LEGS TIME 171

WFBBB 190 1102
WFBBC rso RTA 1105;
WFBBD 150 1105:

150 1107

GMT
<INDEX

The Legs Time Page

(figure 6.7)

PAECENRG 200 o ai® Moy 1 HUMED
RAGE [3 (> INTENTIONALLY BLAMK

-189-

MODULE NAME: DSP_TIME

FILE NAME: LEG_TIME.FOR
PROCESS: SLOW

CALLED BY: LEG TIME
CALLING SEQUENCE: CALL DSP_TIME
PURPOSE:

To create data for the LEGS TIME CDU sCreen.

DESCRIPTION:

This subroutine causes the CDU display to show data
pertinent to the LEGS TIME format. The screen is com-
pletely refreshed every six calls to this module. On the
first call of the cycle the title line and prompt text are
output. On calls #2 through #6 the five lines that show
waypoint information are updated.

Data for the following items is created on the first
call of the cycle. The data is moved to the CDU display
buffer via calls to FMTOUT.

Call TITLE to generate the title line.

Encode the current time of day by calling FMTTIM.
Place the "<INDEX" prompt to the left of line #12.
When a modified flight plan exists place the "ERASE>"
prompt on the right of line #12.

The module SET_PG defines which waypoint will appear at the
top of page #1. The remaining flight plan waypoints are
placed sequentially on display lines, five per page. Enough
LEGS TIME pages are maintained to account for all the way-
points. The following three items may be placed on the
waypoint lines of the display page.

. A blank line for slots past the last defined waypoint.
A "RTE DSC" symbol in reverse video for route discon-
tinuities found in the waypoint buffer.
The waypoint name, ground speed constraint, and assigned
arrival time.

GLOBAL REFERENCES:

VARIABLES
FIRST_PTR LASTPG MODCNT PAGE PASS* PMODE RTA INDX TIME

ARRAYS
DASHES

RECORD ARRAYS
WPT_MOD

FUNCTIONS AND SUBROUTINES
FMTOUT FMTTIM FSTRNG TITLE

i P N o7 FILMED
J._”‘, CNTENTIONALLY BLANK PREC

-190-

MODULE NAME: ECHO_TIME
FILE NAME: LEG_TIME.FOR
PROCESS: SLOW

CALLED BY: LEG_TIME
CALLING SEQUENCE: CALL ECHO_TIME
PURPOSE:

To echo selected arrival times to the CDU scratch pad.

DESCRIPTION:

This procedure is called when the arrival time at a
particular waypoint is selected for insertion into the
scratch pad line. The time value is encoded in place as
if manually enter from the keyboard. An error code is
signaled when the LSK adjacent to a route discontinuity
is selected.

GLOBAL REFERENCES:

VARIABLES
ERCODE* FIRST PTR MODCNT PAGE RTA_WPT

ARRAYS
ENTRY

RECORD ARRAYS
WPT MOD

FUNCTIONS AND SUBROUTINES
FMTOUT FMTTIM

-191-

MODULE NAME: LEG_TIME

FILE NAME: LEG_TIME.FOR
PROCESS: SLOW

CALLED BY: CDUEXC
CALLING SEQUENCE: CALL LEG TIME
PURPOSE:

To serve as the LEGS TIME page executive.

DESCRIPTION:

This procedure is the main routine for the LEGS TIME page
of the CDU. When CDU keyboard entries are made either an
inline action is made or the appropriate handler is called.
After checking inputs the CDU screen refresh module is
called.

The first time LEG_TIME is called, upon transfer from a
different CDU page format, some initialization occurs. The
LEGS TIME subpage is set to one, unless transfering from
the LEGS page. The same subpage is used as was on the LEGS
page to provide agreement between the waypoints seen when
transfering between the pages.

Page and subpage change requests are handled inline by
LEG_TIME. Other entries are handled by special procedures.
The following list describes the types of entries and the
called procedure.

Reject modified flight plan. REJECT

Echo waypoint name to scratch pad. WPNAME

Echo arrival time to the scratch pad. ECHO TIME
Decode and process arrival time entries. TTME_IN

GLOBAL REFERENCES:

VARIABLES
ERCODE* LASTPG PAGE* PASS* PGINIT* PGRQST* PMODE

ARRAYS
ENTRY* OLDPAGE

FUNCTIONS AND SUBROUTINES
DSP_TIME ECHO_TIME REJECT SET_PG TIME IN WPNAME

-192-

MODULE NAME: TIME IN

FILE NAME: LEG_TIME.FOR
PROCESS: SLOW

CALLED BY: LEG_TIME
CALLING SEQUENCE: CALL TIME_ IN
PURPOSE:

To decode and process arrival time entries.

DESCRIPTION:

This procedure handles data entries on the LEGS TIME
page of the CDU. The normal data entry consists of an
arrival time entered at a waypoint using one of the upper
five LSKs on the right hand side of the display screen.
"DELETE"” may also be entered adjacent to the RTA waypoint
to remove all arrival times from the flight plan. The
only other valid data entries are actually function entries
that were made when data happened to be on the scratch pad
line (the two page change commands). When this occurs the
data is reprogrammed to the scratch pad for use by sub-
sequent CDU pages.

Note that when an entered time is more than a half day
earlier than the current time of day, the entered value
is assumed to fall into the following day.

GLOBAL REFERENCES:

VARIABLES
ERCODE* FIRST PTR LASTPG* MODCNT PAGE PGRQST* RTA_INDX*
RTA TM* RTA WPT* TIME

ARRAYS
ENTRY

RECORD ARRAYS
WPT_MOD

FUNCTIONS AND SUBROUTINES
DEL_IN DEMODE REPROG TIMVAL

-193-

Section 6.3.6 THE ROUTE PAGE

The ROUTE page is used for the creation and modifi-
cation of aircraft flight plans. Aan origin and destination
airfield must be chosen before any flight plan information
is entered. Page #1 of the ROUTE page is used to choose
airfields. The takeoff runway and company route may option-
ally be selected on page #1 also. The remainder of page #1
and all following pages contain the route function and
waypoint names comprising the flight plan. The various
route elements may be entered and deleted from the ROUTE
page, however no waypoint constraint data may be entered.

As many route pages as needed to hold all the desired route

elements will automatically be maintained. The current page
and last page are always displayed on the title line in the

form "<current>/<last>",.

The remaining pages of this section contain pictures of
a typical route page and are followed by descriptions of the
34 modules contained in the file ROUTE.FOR.

-195-

ROUTE

== ==
= ______ =
= OgUNWAY =
= |5 RecT 20 =
= | DIRECT
=

<INDEX ERASE>

The Route Page

(figure 6.8)

wee /(7 mremonawy Bia PRECEDING PAGE BLANK NOT FILMED
-

-197-

ROUTE

ViIA
DIRECT

|SLO8

bbb MIRTE DSC

ML3CCV

<INDEX

The Route Page

(figure 6.9)

pact / 7é CINTENTIONALLY BLAMK PRECENING PAGE PLANX NOT FILMED

-199-

MODULE NAME: ACT EXIT
FILE NAME: ROUTE.FOR
PROCESS: SLOW
CALLED BY: DATA 1IN

CALLING SEQUENCE: CALL—ACTaEXIT(INDEX)

PURPOSE:
To verify "dead waypoint" errors.

DESCRIPTION:

Dead waypoint errors occur when the pilot attempts
to delete overflown waypoints from the ROUTE page. The
module signals a dead waypoint situation when a DELETE
is placed at one of the route elements. However a dead
waypoint situation is flagged when the exit waypoint
of a route function that contains the active "To" way-
point is deleted. This procedure checks for that
special case and allows the exit waypoint deletion
instead of setting the error code.

GLOBAL REFERENCES:

VARIABLES
ACTCNT ERCODE* TOWPT

RECORD ARRAYS
RTE_ACT RTE_MOD* WPT ACT

PAGt: /C%8 2 ENTIGNALLY BLANR AR LA R A L e A LTS U

-200-

MODULE NAME: AIRPORT
FILE NAME: ROUTE.FOR
PROCESS: SLOW
CALLED BY: DATA_IN, WPT_ID
CALLING SEQUENCE: AIRPORT (COUNT, ADDRESS)
PURPOSE:
To search the database for the entered airfield.
DESCRIPTION:
The airfield name in the CDU entry buffer is used to
search the navigation database (AADCOM). The address

is returned when found, otherwise a zero is returned.
Two different error code values can be used when

no airfield is found. When the entered text is not the

proper format for an airfield the "BAD DATA FORMAT" code

is returned. When not found in the database the "NOT

FOUND IN MEMORY" is used. Proper airfield format is

a four character name starting with the letter "K".

GLOBAL REFERENCES:

VARIABLES
ERCODE*

ARRAYS
ENTRY

FUNCTIONS AND SUBROUTINES
LUARP

MODULE NAME: BREAK

FILE NAME: ROUTE.FOR

PROCESS: SLOW

CALLED BY: DATA IN, DEL_RTE, DIRECT, GROUP,

INTC WPTS, KILL WPT, NEXT _WPT, SPLIT
CALLING SEQUENCE: CALL BREAK (INDEX)

PURPOSE:
To create a route dicontinuity.

DESCRIPTION:

The route buffer element at route buffer location
"INDEX" is made a route discontinuity. This is done by
clearing the TYPE, ADDR, CPTR, and EXIT modes of that
buffer location.

GLOBAL REFERENCES:

RECORD ARRAYS
RTE_MOD*

-201-

-202-

MODULE NAME: CLEAN_PPT

FILE NAME: ROUTE.FOR
PROCESS: SLOW

CALLED BY: MAKE WPT
CALLING SEQUENCE: CALL CLEAN_PPT
PURPOSE:

To search for free pilot waypoint buffer locations.

DESCRIPTION:

This procedure is called when all twenty of the pilot
waypoint buffer (PPT _WPT) positions are defined. A
search is made for the use of each definition in the
provisional and active route buffers. Those definitions
no longer used are marked as available. If no positions
are found an error code is returned.

GLOBAL REFERENCES:

VARIABLES
ERCODE*

ARRAYS
RTE_CNT

RECORD ARRAYS
PPT WPT RTE_ACT RTE_MOD

FUNCTIONS AND SUBROUTINES
GET CHAR

-203-

MODULE NAME: COMPANY
FILE NAME: ROUTE.FOR
PROCESS: SLOW
CALLED BY: DATA 1IN

CALLING SEQUENCE: CALLOCOMPANY(NAME*LBNGTH)

PURPOSE:
To insert a company route into the route buffer.

DESCRIPTION:

This procedure is called when a company route is entered
on the ROUTE page of the CDU. The length parameter passed
is the number of characters in the global buffer, ENTRY,
which contains the company route name.

Once the company route is found in the navigation data-
base the default origin and destination airfields are set.
Runway data for these airfields is invalidated. When an
origin airfield has already been entered on the CDU the
default value must match or the company route entry is
rejected. The company route SID and STAR pointers are
tested for non-zero values. If supplied, the departure and
arrival route functions are placed in the route buffer by
calling GROUP. The company route’s list of waypoints are
inserted into the route buffer after the SID and before the
STAR.

GLOBAL REFERENCES:

VARIABLES
ADDRESS ERCODE*

ARRAYS
AIRPTS* ENTRY RTE_CNT

RECORD ARRAYS
RTE_MOD*

FUNCTIONS AND SUBROUTINES
GET_LONG GROUP LURTE TYPE WPT

-204-

MODULE NAME: DATA 1IN
FILE NAME: ROUTE.FOR
PROCESS: SLOW
CALLED BY: ROUTE

CALLING SEQUENCE: CALL DATA IN

PURPOSE:
To parse route page keyboard data entries.

DESCRIPTION:

This subroutine is called to parse keyboard data entries.
Function entries are handled by the main procedure ROUTE or
the module ECHO. These data entries are the names of route
functions, waypoints, and runways. If route page #l1 is being
shown there are four entries which are made at fixed
positions on the screen. This includes the origin and
destination airfields, origin runway, and company route.

The adjacent line select keys (LSKs) are used to modify these
items. All other entries are waypoints, route functions, or
'DELETE’ entries which are enterd at various display lines
via the LSKs.

First, DATA IN checks for fixed position inputs. These
are the origin/destination airfields, company route, and
takeoff runway. When a valid origin airfield is entered,
the flight plan is initialized to be empty. When the
destination airfield is entered any previously existing
touchdown waypoints are removed from the plan. When a
company route is entered the entire flight plan is setup
by a call to the module COMPANY. Valid takeoff runways
elicit a call to ORG_RWY to generate the required runway
waypoints.

The #6 LSK on the left hand side (LSK-L6) is used to
change to the ROUTE INDEX page. Data on the scratch pad
when this LSK is selected is not intended as a data entry.
DATA IN detects this situation and responds by calling
REPROG to restore the data to the scratch pad, and then
signals the page change request.

The processing of waypoints, route functions, and
DELETE entries occurs next. Note that all route functions
are always entered with left LSKs and waypoints with right
LSKs. DELETE entries are made on either side. The LSK
selected and the current ROUTE page number are used to
identify a particular element in the route buffer. The
element may already contain an entry or may be the next
available spot at the end of the buffer. Note that route
buffer elements corresponding to waypoints prior to the
current "To" waypoint on an active flight plan may not
be modified. Also the position imediately following a
route function with an undefined exit waypoint may not

be changed.

-205~-

A left LSK is used when a route function or DELETE is
entered. The DELETE entry will erase the route function
and replace it with a route discontinuity marker, unless
the deleted item was the last in the buffer. When a
route function is entered, RTE ID is called to search the
system database for the name and to identify its type
(SID, STAR, ...). Two types of route function entries are
possible. If an individual route function name was entered,
RTE_ID set OFFSET to zero, the route function is made part
of the flight plan by calling GROUP. An intercept route
entry of the form BEARING/ROUTE_NAME/EXIT_WAYPOINT is also
processed by RTE_ID. In this situation the offset of the
exit waypoint is returned to this procedure in the global
variable OFFSET. The procedure RTE_INTC is called instead
of GROUP for the insertion of the intercept waypoint and
the route function waypoints.

A right LSK is used when a waypoint or DELETE entry is
made. DELETE can either erase the exit waypoint of a route
function or a normal waypoint. Route discontinuity markers
are inserted for DELETE entries unless the erased item was
the last in the buffer. When a waypoint name is entered,
WPT_ID is called to search the system database and identify
the waypoint type (GRP, NAVAID, ...). If found the waypoint
information is inserted into the route buffer by calling
WAYPOINT.

GLOBAL REFERENCES:

VARIABLES
ERCODE* PAGE PGRQST* PMODE PRMT TOWPT

ARRAYS
AIRPTS ENTRY RTE_CNT*

RECORD ARRAYS
RTE_MOD WPT ACT

FUNCTIONS AND SUBROUTINES
ACT_EXIT AIRPORT BREAK COMPANY DEL_IN DEL RTE EXIT GROUP
INIT _PLAN LURWY OPEN ORG_RWY REMOVE REPROG RTE_ID RTE INTC
WAYPOINT WPT_ID N

-206-~

MODULE NAME:
FILE NAME:
PROCESS:
CALLED BY:

CALLING SEQUENCE:

PURPOSE:

DEL_IN
ROUTE . FOR

SLOW

ACTION, DATA IN, DA_INPUT, FIX_ INFO,
FIX INP, FLT TYPE INP, HOLD_ INPUT,
IDENT, INDX_INPUT, INITUP, NAV_INPUT,
NMBRS, PFINP, SUBNAV_INPUT, TIME IN,
TKOFFINP, WPT DATA -
BOOLEAN=DEL_IN()

To identify DELETE entries.

DESCRIPTION:

The CDU entry line buffer ENTRY is tested for "DELETE".

GLOBAL REFERENCES:

VARIABLES
STRING

ARRAYS
ENTRY

MODULE NAME: DEL_RTE

FILE NAME: ROUTE .FOR
PROCESS: SLOW

CALLED BY: DATA IN, MODIFY

CALLING SEQUENCE: CALL.DEL_RTE(INDEX)

PURPOSE:
To remove a route function from the route buffer.

DESCRIPTION:

This procedure is called with a route buffer index
designating a route function which is to be removed from
the route buffer. If it is the last route element in
the buffer it is simply removed. Otherwise a route
discontinuity is created in its place.

Note that the module XLAT RTE handles the clearing
of the destination runway address save in AIRPTS.
Therefore this module does not have to determine if the
deleted route function was an approach.

GLOBAL REFERENCES:

ARRAYS
RTE_CNT*

FUNCTIONS AND SUBROUTINES
BREAK

-207-

-208-

MODULE NAME: DSC_CHECK
FILE NAME: ROUTE.FOR
PROCESS: SLOW
CALLED BY: DEMODE

CALLING SEQUENCE: CALL DSC_CHECK

PURPOSE:
To perform maintainance on the route buffer.

DESCRIPTION:

Each time changes are made to the route buffer DSC CHECK is
called to determine if the route buffer manipulations have
produced route discontinuities which either appear at the
end of the buffer or immediately following another discon-
tinuity. Also checks are made to determine if the same
waypoint is placed in consecutive buffer locations. When
any of these situations occur, the excess elements are
removed from the buffer,

GLOBAL REFERENCES:

ARRAYS
RTE_CNT*

RECORD ARRAYS
RTE_MOD

FUNCTIONS AND SUBROUTINES
GET_LONG KILL

-209-

MODULE NAME: ECHO
FILE NAME: ROUTE.FOR
PROCESS: SLOW
CALLED BY: ROUTE

CALLING SEQUENCE: CALL ECHO

PURPOSE
To echo route element names to the scratch pad.

DESCRIPTION:

LSK’s are used on the ROUTE page to select particular
route elements for use in the scratch pad. 1In this form
the LSK is used as a function entry since no scratch pad
data is entered prior to selection. The route function
name is programmed into the scratch pad line as if the
individual characters were manually entered.

The PROG_SCR routine is called to echo the names of
origin or destination airfields, direct waypoints, exit
waypoints, and route functions to the scratch pad. The
type byte stored in the route buffer is used to determine
how many characters to echo for the various kinds of
waypoints.

GLOBAL REFERENCES:

VARIABLES
ERCODE* PAGE

ARRAYS
ATRPTS ENTRY RTE CNT

RECORD ARRAYS
RTE_MOD

FUNCTIONS AND SUBROUTINES
GET_CHAR GET_LONG PROG_SCR TYPE WPT

-210-

MODULE NAME: ENTRY WPT

FILE NAME: ROUTE.FOR

PROCESS: SLOW

CALLED BY: BOUNDS, GROUP, SEQUENCE

CALLING SEQUENCE: OFFSET = ENTRY WPT (INDEX,ADDR, TYPE)
PURPOSE:

To determine validity of a route buffer entry waypoint.

DESCRIPTION:

This function is used to determine if a waypoint stored
in the route buffer can be used as the entry waypoint of a
route function. The offset from the start of the route
function to the waypoint pointer is returned when the way-
point is valid, otherwise zero is returned. See section
1.5.1.1 for detatils of the database format for route
function data.

There are three input parameters to ENTRY WPT. The first
is the index into the route buffer of the element to be
tested as an entry waypoint. Note that the selected route
buffer element may be either a waypoint or a route function.
If it is a route function the exit waypoint is used for the
validity test. When this situation occurs, two route functions
share the same waypoint as a joint exit/entry. The remaining
parameters are the address and type of the route function
stored in the navigation database.

GLOBAL REFERENCES:

RECORD ARRAYS
RTE_MOD

FUNCTIONS AND SUBROUTINES
GET_LONG RTE_WPT

-211-

MODULE NAME: EXIT

FILE NAME: ROUTE.FOR

PROCESS: SLOW

CALLED BY: DATA_IN, EXECUTE, ROUTE, UPDATE, WAYPOINT
CALLING SEQUENCE: BOOLEAN = EXIT (INDEX)

PURPOSE:

To check exit waypoint status.

DESCRIPTION:

The route element defined in the route buffer, location
INDEX, is tested to determine if it is a route function
with an undefined exit waypoint. If it is the Ffunction
returns the boolean value FALSE. Otherwise the return
value is TRUE.

GLOBAL REFERENCES:

RECORD ARRAYS
RTE_MOD

-212-

MODULE NAME: EXIT_ WPT

FILE NAME: ROUTE.FOR

PROCESS: SLOW

CALLED BY: GROUP

CALLING SEQUENCE: OFFSET = EXIT WPT (INDEX,ADDR, TYPE)
PURPOSE:

To determine validity of a route buffer exit waypoint.

DESCRIPTION:

This function is used to determine if a waypoint stored
in the route buffer can be used as the exit waypoint of a
route function. The offset from the start of the route
function to the waypoint pointer is returned when the way-
point is valid, otherwise zero is returned. See section
1.5.1.1 for detatils of the database format for route
function data.

There are three input parameters to ENTRY WPT. The first
is the index into the route buffer of the element to be
tested as an entry waypoint. If this index points to an
unused buffer location or the element at the location is a
route function, the invalid status is immediately returned.
The remaining parameters are the address and type of the
route function stored in the navigation database. The
input data is passed on to the function RTE_WPT to check
for validity as a route waypoint. -

GLOBAL REFERENCES:

ARRAYS
RTE_CNT

RECORD ARRAYS
RTE_MOD

FUNCTIONS AND SUBROUTINES
RTE_WPT

-213-

MODULE NAME: FIND PPT

FILE NAME: ROUTE.FOR

PROCESS: SLOW

CALLED BY: PROCESS_ GRP, UPDATE POS, WPT ID
CALLING SEQUENCE: INDEX = FIND PPT (NAME)

PURPOSE:

To locate a specific pilot defined waypoint.

DESCRIPTION:

This function is called with the five character name
of a pilot waypoint. The pilot waypoint buffer (PPT WPT)
is searched and the index into the Structure is returned.
A zero index value is returned when not found.

GLOBAL REFERENCES:

RECORD ARRAYS
PPT WPT

-214-

MODULE NAME: FIND RTE

FILE NAME: ROUTE.FOR

PROCESS: SLOW

CALLED BY: RTE_ID

CALLING SEQUENCE: ER CODE = FIND_RTE (NAME,CNT, ADDR, TYPE)
PURPOSE :

To locate a route function in the navigation database.

DESCRIPTION:

This function searches the system database for the
route function whose name and length are supplied as the
first two parameters in the calling sequence. The address
and route function type are returned through the parameter
list. The value returned through the function reference is
a CDU error code. If the value is zero, no errors were
detected.

An airway name consists of two to six letters, start-
ing with "J" or "V". SIDs, STARs, and APPROACHES have
five or six characters with no special starting letter.

Non-airway route functions are associated with particular
airfields. The module LUSID is called to search AADCOM for
any SID/STAR/APPROACH at the destination airfield first.
Searching is complete if the item was found in the database
and the type of the located route function is not a SID,
since departures from the destination airfield may not be
referenced. Searching continues using the origin airfield
as reference. This time the only route function type
considered a valid find is the SID.

GLOBAL REFERENCES:

ARRAYS
AIRPTS

FUNCTIONS AND SUBROUTINES
LUJET LUSID LUVIC

-215-

MODULE NAME: GROUP

FILE NAME: ROUTE.FOR

PROCESS: SLOW

CALLED BY: COMPANY, DATA IN, MODIFY, RT_NEW
CALLING SEQUENCE: CALL GROUP (ADDR, TYPE, INDEX, APPEND)
PURPOSE :

To insert a route function into the route buffer.

DESCRIPTION:

This procedure enters a group of waypoints (route
function) into the route buffer. Processing varies for
the different route function types. 1In append mode the
new route function is simply added to the end of the
route buffer. Otherwise an insertion, possibly with the
creation of route discontinuities, into the buffer is
performed. When insertion occurs the following route
elements, including the one at the selected position,
are moved ahead in the route buffer.

The parameter list in the call consists of four input
parameters. The first is the database address of the
entered route function. Next is the route function type
code (defined in CDU.INC). The INDEX parameter points to
the destination slot in the route buffer for the entered
route function. The last parameter is a flag indicating
when the append mode is active.

The previous route buffer element may be used as an
entry waypoint into the entered route function. The
function ENTRY WPT is used to set the variable ENTRY OFS
to the offset within the route function data to the
entry waypoint. If the previous element cannot be used
as an entry waypoint, ENTRY OFS is zeroed. The following
chart describes how the different route function types
are handled by GROUP.

APPROACHES: When an entry waypoint does not already exist
in the route buffer, the first waypoint on the approach
is used as a default. The last waypoint of the approach
is always used as the exit waypoint, which automatically
terminates the flight plan as the touchdown runway. No
route discontinuities are generated from approach entries,

SID/STAR: The entry waypoint defaults to the first of
the route function unless a valid entry waypoint was
found in the route buffer. The following route buffer
element is checked for validity as an exit waypoint
for the entered route function. 1If it cannot be used
the default exit waypoint is the last waypoint on the
route function. No route discontinuities are generated
from SID/STAR entries.,

-216-

AIRWAYS: An entry waypoint must have been explicitly
defined as the previous route element or the route
function entry is rejected. When an airway is inserted
(not appended) into the route buffer a route discon-
tinuity marker is always inserted immediately following
the entered route function. No default exit waypoint
is used and the next route buffer element is not con-
sidered as a possible exit waypoint.

GLOBAL REFERENCES:

VARIABLES
ERCODE*

ARRAYS
AIRPTS* RTE_CNT*

RECORD ARRAYS
RTE_MOD*

FUNCTIONS AND SUBROUTINES
BREAK ENTRY WPT EXIT WPT GET_LONG KILL OPEN REMOVE TYPE WPT

-217-

MODULE NAME: INIT PLAN

FILE NAME: ROUTE, FOR
PROCESS: SLOW

CALLED BY: DATA IN
CALLING SEQUENCE: CALL INIT PLAN
PURPOSE:

To initialize the flight plan.

DESCRIPTION:

Each time the origin airfield entry is made on the
ROUTE page of the CDU the flight plan is initialized. A
number of memory locations are cleared or invalidated as
follows.

. Company route address is invalidated.
. CDU mode is set to initial clearance.
. 2D/3D/4D guidance modes are invalidated.
MOD & ACT route buffer counts are zeroed.
MOD & ACT hold waypoints are invalidated.
Phase of flight booleans are reset.
Cruise altitude is invalidated.
Origin/destination airfield info is invalidated.
The pilot waypoint buffer is cleared.
The waypoint constraint buffer is cleared.

GLOBAL REFERENCES:

VARIABLES
CLBCHNG* CRZALT* CRZCHNG* C_ADR* DESCHNG* DESCHNG1]*
GUID2D* GUID3D* GUID4D* HLD PTR* HLD WPT* PMODE*

ARRAYS
AIRPTS* CONBUF RTE_CNT*

RECORD ARRAYS
PPT WPT

FUNCTIONS AND SUBROUTINES
CLRBUF

-218-

MODULE NAME: INTC _WPTS

FILE NAME: RTE INTC.FOR

PROCESS: SLOW

CALLED BY: RTE _INTC

CALLING SEQUENCE: CALL INTC WPTS (LAT,LON, ENTRY,RTE_ADR,
RTE _TYP,BUF PTR,APPEND)

PURPOSE:

To store route intercept data into the route buffer.

DESCRIPTION:

This module makes the insertions into the provisional
route buffer (RTE MOD) which reflect the route intercept
data generated when the "RTE INTC" option is selected on the
Route page. Four elements are inserted into the route
buffer.

1) A waypoint for the leg intercept point

2) The entry waypoint onto the route

3) The route function

4) A route discontinuity separating the new data from the old

The first two items passed through the calling sequence
are the latitude and longitude of the intercept waypoint.
The next item passed is the offset into the route function
of the route entry waypoint followed by the address and type
of the route function. Next is the index into the route
buffer where the insertion is to be made. The last parameter
is a boolean flag indicating whether the additions are either
inserted within the route buffer or appended onto the end.

The intercept waypoint is created in the Pilot Defined
Waypoint buffer with a call to MAKE WPT. The route function
entry waypoint is saved next, using the passed offset to
fetch the address pointer to the actual waypoint. The
function TYPE WPT is used to determine what type of waypoint
the entry waypoint is. The route function is stored by using
the passed address and type. The global variable OFFSET
already contains the required exit waypoint offset, which
was found when the route intercept entry was initially
parsed. In the case of the Approach type of route function,
the global exit offset is ignored and the last waypoint of
the Approach is used as the exit. Also for an Approach the
destination runway is set and any route buffer elements
past the Approach are removed. The fourth addition to the
route buffer is a route discontinuity marker.

-219-

GLOBAL REFERENCES:

VARIABLES
OFFSET

ARRAYS
AIRPTS* RTE CNT*

RECORD ARRAYS
RTE_MOD*

FUNCTIONS AND SUBROUTINES
BREAK GET_LONG KILL MAKE _WPT OPEN TYPE WPT

~220-

MODULE NAME: INT LEG

FILE NAME: RTE INTC.FOR

PROCESS: SLOW

CALLED BY: RTE_INTC

CALLING SEQUENCE: DIST = INT LEG(X1, Y1, X2, Y2, PBRG)
PURPOSE:

To compute the distance to route function intercept
points.

DESCRIPTION:

This function returns the distance to the intersection
point of a line through the coordinate system origin,
extended at an angle "PBRG", and the line bounded by the
coordinate endpoints (X1,Y1;X2,Y2). 1If no point is found,
a "-1" is returned. The coordinate endpoints and line
bearing are passed in the parameter list. Note that both
lines are treated as infinte length lines extented at their
defined slopes. Once the intersection of the infinite lines
is found, checking is performed to determine if the inter-
section falls within the bounds of both lines. Note that
the line defined by origin and bearing is an infinite line
in the direction of the passed bearing only.

An intersection point exists somewhere on the infinite
lines, as long as they do not have the same slope. The
intersection coordinates are found in one of three ways;
the line through the origin is vertical (infinite slope),
the bounded line is vertical, or neither is vertical. The
methods used for computing the X and Y intersection points
are shown below.

SLOPE = (Y2 - Y1) / (X2 - X1) [slope of bounded line]
Y INT = Y1 - X1 * SLOPE ["Y" intercept of bounded line]
TANBRG = TAN (90 - PBRG) [adjusted to cartesian angular measure]

Origin line vertical:
X =0; Y =Y INT

Bounded line vertical:
X = X1; Y = X1 * TANBRG

Neither vertical:
X Y_INT / (TANBRG - SLOPE)
Y TANBRG * X

-221-

Once the intersection point is found, it is determined
whether the intersection point falls within the bounds of
the actual lines. The function BETWEEN checks if the point
is on the bounded line segment. Since the bearing through
the origin line does not actually extend in the reverse
direction, the angle to the intersect coordinates is com-
puted and compared to the original bearing to see that they
match (are not 180 degrees out of phase) .

GLOBAL REFERENCES:

FUNCTIONS AND SUBROUTINES
ANGL MTHSATAND2 MTH$SQRT MTHSTAND

-222-

MODULE NAME: KILL

FILE NAME: ROUTE.FOR

PROCESS: SLOW

CALLED BY: BEG RTE, DSC CHECK, GROUP, HLD POS,

HOLD INPUT, INTC_WPTS, LINK PD, MERGE,
MODIFY, NEW _ENTRY, NEXT_WPT, REMOVE,
TRIM WPTS

CALLING SEQUENCE: CALL KILL(INDEX, COUNT)

PURPOSE:
To remove route elements from the route buffer.

DESCRIPTION:

"COUNT" route elements are removed from the route buffer
starting at the location INDEX. The created gap is removed
by shifting trailing elements back over the deleted ones.

GLOBAL REFERENCES:

ARRAYS
RTE_CNT*

RECORD ARRAYS
RTE_MOD*

—-223-

MODULE NAME: MAKE WPT
FILE NAME: ROUTE.FOR

PROCESS: SLOW

CALLED BY: DIRECT, FILL_RTE, INTC_WPTS, INTERCEPT,

MODIFY, ORG_RWY, WAYPOINT, WPT ID
CALLING SEQUENCE: ADDR=MAKE_WPT (LAT, LON,ALT, SPD, NAME)

PURPOSE:
To create pilot defined waypoints.

DESCRIPTION:

This function is used to create waypoints in the pilot
waypoint buffer (PPT_WPT). The address of the created
waypoint is returned to the caller.

The parameter list defines the characteristics of the
Created waypoint. The position is passed as the first two
parameters (latitude & longitude). Altitude and speed
are optional parameters which become default waypoint
constraints. The name parameter may be either a full five
character name or just the three character name prefix.
When the prefix is supplied a unique two digit sequence
number is appended to the name. The CDU entry line which
prompted the creation of the pilot waypoint is saved in
PPT WPT also for reference by the NAV DATA page.

When the pilot waypoint buffer is full, CLEAN PPT is
called to remove waypoint definitions no longer used. If
no space is found an error code is returned.

GLOBAL REFERENCES:

VARIABLES
ERCODE STRING

ARRAYS
ENTRY

RECORD ARRAYS
PPT WPT

FUNCTIONS AND SUBROUTINES
CLEAN_PPT ISTRNG P LIST

-224-

MODULE NAME: MERGE
FILE NAME: ROUTE.FOR
PROCESS: SLOW
CALLED BY: WAYPOINT

CALLING SEQUENCE: CALL MERGE (WPT_ADR, INDEX, LAST_INDEX)

PURPOSE:
To merge sections of the route buffer.

DESCRIPTION:

This subroutine is called to determine if the last
entered waypoint appears again further along on the flight
plan. This is interpreted as an attempt, by the pilot, to
eliminate the part of the flight plan in between. When
this situation is detected, the route buffer data in
between the two occurences (including one copy of the
repeat waypoint) is removed from the route buffer.

The address of the entered waypoint is passed as the
first call parameter. Its route buffer postion is
the second parameter and the third is the route buffer
position where searching should be terminated.

When the merge is performed the second copy of the
waypoint is thought to be moved up to a previous position,
removing elements in between. Therefore any waypoint
constraints associated with the original waypoint are
transfered to the new copy by calling XFER_CON.

Complications arise when the route buffer elements
examined are route functions. Then the waypoints defined
between, and including, the exit and entry waypoints are
compared to the key waypoint. In this situation the
key waypoint becomes the new entry waypoint for the
tested route function.

GLOBAL REFERENCES:

RECORD ARRAYS
RTE_MOD

FUNCTIONS AND SUBROUTINES
BOUNDS KILL RTE WPT SEQUENCE XFER_CON

-225-

MODULE NAME: NEW_POS

FILE NAME: ROUTE.FCR

PROCESS: SLOW

CALLED BY: INTERCEPT, ORG_RWY, WAYPOINT, WPT ID

CALLING SEQUENCE: CALL NEW_POS(LXTl,LONl,BRG,RNG,LATZ,LONZ)

PURPOQOSE:
To compute a position from a defined reference position.

DESCRIPTION:

This procedure uses a reference position (LAT1/LON1),
bearing (BRG), and range (RNG) from the parameter list
to compute a new position which is returned through the
parameter list (LAT2/LON2). The Path Definition procedure,
LOCAL_ERAD, is called to find the local feet per degree
values.

GLOBAL REFERENCES:

VARIABLES
LAT FEET LON_FEET

FUNCTIONS AND SUBROUTINES
LOCAL_ERAD SCOSD

-226-

MODULE NAME: OPEN

FILE NAME: ROUTE.FOR

PROCESS: SLOW

CALLED BY: BEG RTE, DATA 1IN, DIRECT, GROUP, HLD 1IN,

INTC_WPTS, KILL_WPT, NEXT_WPT, ORG_RWY,
SPLIT, WAYPOINT -
CALLING SEQUENCE: CALL OPEN(INDEX, SPACES)

PURPOSE:
To create open spaces in the route buffer.

DESCRIPTION:

A number of free positions, indicated by the SPACES
parameter, are open at the route buffer location INDEX.
The subsequent route elements are moved further along in the
route buffer.

GLOBAL REFERENCES:

VARIABLES
ERCODE*

ARRAYS
RTE_CNT*

RECORD ARRAYS
RTE_MOD*

-227-

MODULE NAME: ORG_RWY

FILE NAME: ROUTE.FOR
PROCESS: SLOW

CALLED BY: DATA IN, MODIFY

CALLING SEQUENCE: CALL-ORG_RWY(ADDRESS)

PURPOSE:
To insert an origin runway into the route buffer.

DESCRIPTION:

This procedure is called with the address of a runway
in the navigation database. First any existing takeoff
runway waypoints are removed from the flight plan. Two
waypoints are inserted at the start of the route buffer.
The first is placed at the position of the brake release
point on the runway and the second is placed three nautical
miles ahead at an elevation of 1005 feet above the runway
(3 degree ascent).

The two waypoints are actually pilot waypoints created
by calling MAKE WPT. Their names are "BRnnx" and "DPnnx"
where "nn" is the runway number and "x" is the left, right
indicator "L" or "R". If it is the only runway with that
direction at the airfield, the "x" character is shown as
'IXII .

GLOBAL REFERENCES:

ARRAYS
AIRPTS*

RECORD ARRAYS
RTE_MOD*

FUNCTIONS AND SUBROUTINES
GET_CHAR GET_REAL MAKE WPT NEW POS OPEN REMOVE

-228-

MODULE NAME: PROG_SCR

FILE NAME: ROUTE.FOR

PROCESS: SLOW

CALLED BY: ECHO

CALLING SEQUENCE: CALL PROG_SCR(STRING, LENGTH)
PURPOSE:

To program the CDU scratch pad.
DESCRIPTION:

The text passed to this module in the parameter STRING
is programmed into the scratch pad by calling FMTOUT.
GLOBAL REFERENCES:

FUNCTIONS AND SUBROUTINES
FMTOUT

-3

-229-

MODULE NAME: REMOVE

FILE NAME: ROUTE.FOR

PROCESS: SLOW

CALLED BY: DATA_IN, GROUP, MODIFY, ORG_RWY, WAYPOINT

CALLING SEQUENCE: CALL_REMOVE(RWY‘CODE)

PURPOSE:
To remove runway waypoints from the flight plan.

DESCRIPTION:
This procedure is called to remove either takeoff or

touch~-down runway waypoints from the route buffer. The
runway code parameter selects which type to delete. The
module checks the ".RWY" field of all the waypoints in
route buffer for RWY_ CODE matches. The procedure KILL
is called to remove the waypoints.

GLOBAL REFERENCES:

ARRAYS
RTE_CNT

RECORD ARRAYS
RTE_MOD

FUNCTIONS AND SUBROUTINES
KILL

-230-

MODULE NAME: ROUTE
FILE NAME: ROUTE.FOR
PROCESS: SLOW
CALLED BY: SELECT

CALLING SEQUENCE: CALL ROUTE

PURPOSE:
To serve as the ROUTE page executive procedure.

DESCRIPTION:

This subroutine is the main procedure for the ROUTE page
software. It performs a number of top-level functions
beginning with first pass initialization and the computation
of a few variables used by other modules. Most keyboard
entries are handled by a call to DATA IN, however simple
keyboard requests such as page changes are performed
inline. A call to the CDU screen update procedure (UPDATE)
is made every time the CDU executive calls ROUTE. This is
done to periodically update lines of the CDU screen even
when no changes have been made.

Two items handled by ROUTE and used by other modules
are the prompt boolean and page count. The line following
the last ROUTE page entry may have dash prompts to indicate
the next available entry position. The flag PRMT is set
when the prompt is valid. The conditions are as follows.

The flight plan does not end with a touchdown runway.
The last item is either a route function complete
with its exit waypoint or a single waypoint.

origin and destination airfields are defined.

The LASTPG variable is computed as the number of ROUTE
display pages required to show all the route data,
including the prompt text.

GLOBAL REFERENCES:

VARIABLES
ERCODE* LASTPG PAGE* PASS* PGINIT* PGRQST* PMODE PRMT

ARRAYS
AIRPTS ENTRY* RTE_CNT

FUNCTIONS AND SUBROUTINES
DATA IN DEMODE ECHO EXIT FMTOUT REJECT UPDATE

-231-

MODULE NAME: RTE ID

FILE NAME: ROUTE.FOR
PROCESS: SLOW

CALLED BY: DATA IN RT NEW

CALLING SEQUENCE: CALL RTE_ID(COUNT, ADDRESS, TYPE)

PURPOSE:
To identify a route function entry.

DESCRIPTION:

This procedure is called when a route function name is
entered on the CDU. The navigation database is searched to
determine the validity of the entry.

The paramter list contains one input and two output
paramters. The count is the number of characters in the
route function name, which is stored in the global buffer
ENTRY. The route function address and type are returned to
the caller. When the route function is not found in memory
a zero address value is returned.

Two formats for route function entry exist. The first
is the entry of a route function name only. In this
situation the function FIND RTE is called to search the
database for the entered name and the result is immediately
returned to the caller. The second format appears as three
items, separated by slashes as follows.

BEARING/ROUTE_FUNCTION_NAME/EXIT_WAYPOINT_NAME

This format is used when a fixed intercept bearing from a
waypoint, already part of the flight plan, onto a route
function is desired. RTE_ID parses this entry to separate
the three items. The bearing value is decoded and stored in
the global variable BEARING. The route function and exit
waypoint are then located in the system database and the
offset of the exit is found on the route function. The
route function address and the exit waypoint offset are
returned to the caller through the global variables ADDRESS
and OFFSET respectively.

GLOBAL REFERENCES:

VARIABLES
BEARING ERCODE* INDAT OFFSET*

ARRAYS
ENTRY

FUNCTIONS AND SUBROUTINES
FIND_RTE LIB$LOCC OTS$CVT_TU_L RTE WPT WPT_ID

-232-

MODULE NAME: RTE_INTC

FILE NAME: RTE_INTC.FOR

PROCESS: SLOW

CALLED BY: DATA IN

CALLING SEQUENCE: CODE=RTE_INTC (RTE_ADR,RTE_TYP,PTR,APPEND)
PURPOSE:

To perform the route function intercept computations.

DESCRIPTION:

This procedure is called when the Route Intercept
option is requested on the RTE page. Each leg of the
selected route is tested for an intersection with a radial
drawn from the previous waypoint in the flight plan. More
than one leg may be intersected so the nearest leg is used.
Note that DME turn legs are never chosen.

The following list is a summary of the inputs and out-
puts referenced in RTE_INTC. These are accessed both as
calling parameters and global variables.

INPUTS
BEARING Entered magnetic bearing to route
OFFSET Byte offset in database to exit waypoint
RTE ADR Address of route in database
RTE TYP Type of route
BUF_PTR Pointer to insert position in RTE buffer
APPEND Append to end of RTE buffer flag
QUTPUTS
RTE _MOD Updated provisional route buffer

First the position of the reference waypoint in the
flight plan is fetched. The reference waypoint is the way-
point immediately preceeding the position in the flight plan
where the route function intercept was entered on the RTE
page. The preceeding item in the route buffer may be
another route function. 1In this case the exit waypoint of
the route function is used as the reference waypoint.

Each leg segment on the selected route function is
processed to determine if an intercept point exists. The
procedure XYPOS is called to find the North and East offsets
(feet) from the reference waypoint to the leg segment way-
points. The function INT_LEG is called for each pair to
determine the existance of an intersection from the
reference waypoint at the entered bearing. A "-1" is
returned from INT LEG when no intersection exists. Other-
wise the distance from the reference waypoint to the
intersection position is returned. The distance to the
closest intersection is saved.

-233-

When finished with all waypoints a check is made to
determine if an intersection has been found. If the leg
belongs to an AIRWAY the exit waypoint is used to determine
which direction to go from the intersect waypoint by
selecting one of the leg endpoints. For unidirectional
routes an error is flagged when the entered exit waypoint
would cause the wrong direction to be made.

"NEW _POS" is called to compute the position of the
intersect waypoint and INTC WPTS inserts the appropriate
route elements into the route buffer.

GLOBAL REFERENCES:

VARIABLES
BEARING OFFSET

RECORD ARRAYS
RTE_MOD

FUNCTIONS AND SUBROUTINES
GET LONG GET REAL INTC_WPTS INT_LEG MAG_VAR NEW_POS XYPOS

-234-

MODULE NAME: RTE _WPT

FILE NAME: ROUTE.FOR

PROCESS: SLOW

CALLED BY: ADD_PLAN, ADD WPT, ENTRY WPT, EXIT WPT,

HLD IN, KILL CON, KILL WPT, MERGE,

NEW _CON, TRIM WPTS, WAYPOINT
CALLING SEQUENCE: OFFSET = RTE_WPT (RTE_ADR, RTE TYP, WPT ADR)
CALLS TO: -

PURPOSE:
To determine if a particular waypoint is part of a data-
base route function.

DESCRIPTION:

RTE WPT is called with the address and type of database
route function. The address of a waypoint is also passed.
The waypoint pointers in the route function body are tested
to determine if the input waypoint is one of the route
waypoints. If it is, the offset from the start of the
route function to the waypoint pointer is returned. Other-
wise a zero value is returned (See the format of AADCOM
route function in section 1.5.1.1).

GLOBAL REFERENCES:

FUNCTIONS AND SUBROUTINES
GET_LONG

-235-

MODULE NAME: SEQUENCE

FILE NAME: ROUTE.FOR
PROCESS: SLOW

CALLED BY: MERGE, WAYPOINT

CALLING SEQUENCE: BOOLEAN=SEQUENCE (IN_OFFSET, INDEX)

PURPOSE:
To determine proper waypoint sequence for a route function.

DESCRIPTION:

This function returns a boolean result which informs the
caller whether the entry and exit waypoints assigned to a
route function are in the proper sequence. Anytime the
entry and exit waypoints are identical the function returns
an invalid status. Airways and company routes are bidirec-
tional so any pair may serve as entry/exit. SID/STAR/
APPROACH route functions have their waypoint order pre-
defined by the order in the navigation database. Checks are
performed to affirm that the correct order is maintained.

The parameter list consists of two input parameters. The
first is the offset in the route function data block of the
entry waypoint pointer. The second is the route buffer index
of the designated route function. SEQUENCE may be called
with the entry offset equal to zero. In this situation the
entry offset is computed from the previous route buffer
element.

GLOBAL REFERENCES:

RECORD ARRAYS
RTE_MOD

FUNCTIONS AND SUBROUTINES
ENTRY WPT

-236-

MODULE NAME: SLASH

FILE NAME: ROUTE.FOR

PROCESS: SLOW

CALLED BY: ' WPT 1D

CALLING SEQUENCE: INDEX = SLASH(START INDEX)
PURPOSE:

Search for the "/" character.

DESCRIPTION:
The CDU entry buffer is searched starting at the

character designated by the START INDEX parameter. The
function returns the index of the first slash found. A
zero is returned when one is not found.

GLOBAL REFERENCES:

ARRAYS
ENTRY

-237-

MODULE NAME: TITLE

FILE NAME: ROUTE.FOR

PROCESS: SLOW

CALLED BY: DSP_TIME, DSP_WPTS, REFRESH HOLD,
UPDATE -

CALLING SEQUENCE: CALL TITLE (TEXT,COUNT,PAGE, LAST PAGE)

PURPOSE:
To create the CDU page title line.

DESCRIPTION:

This procedure generates title line data for several
of the CDU clearance pages. The page identification text
is passed along with the current and last page numbers.

GLOBAL REFERENCES:

VARIABLES
PMODE

FUNCTIONS AND SUBROUTINES
FMTOUT

-238-

MODULE NAME: TYPE WPT

FILE NAME: ROUTE.FOR

PROCESS: SLOW

CALLED BY: COMPANY, ECHO, EXPAND RTE, FILL RTE,

GROUP, INT_RTE, NEW _ENTRY, RT NEW,
RTE, UPDATE -
CALLING SEQUENCE: TYPE = TYPE WPT (ADDRESS)

PURPOSE:
To determine waypoint type.

DESCRIPTION:

The address of a navigation database waypoint is sent to
this function. TYPE WPT examines the data and returns to
the caller the waypoint type. The logic is outlined below.

NAVAID: 1If fourth byte of data < 0.
AIRFIELD: If fifth byte of data is a blank.
GRP: Otherwise.

GLOBAL REFERENCES:

FUNCTIONS AND SUBROUTINES
GET_BYTE

-239-

MODULE NAME: UPDATE

FILE NAME: ROUTE.FOR

PROCESS: SLOW

CALLED BY: ROUTE

CALLING SEQUENCE: CALL UPDATE

PURPOSE: ’

To update CDU display lines for the ROUTE page.

DESCRIPTION:

This subroutine formats lines of data for the CDU
screen. The utility FMTOUT is used throughout to store
data in the proper format (see section 1.2.1). Page #1
of the ROUTE page has its own unique format, while all
other pages follow the same template. This module is
called once per iteration of the CDU software. The calls
are used in a cycle of seven steps. On each step a
different section of the ROUTE page display is updated.
After every seven calls to UPDATE the entire CDU screen
will have been refreshed. The operations performed on
each pass through this module are summarized below.

PASS #0: The title line is stored by a call to TITLE.
Also the "Via" & "To" labels are sent to line #7 or
line #1. Page #1 displaces the labels to line #7.

PASS #l/page #1: The origin and destination airfield
data. Includes labels and airfield names. No air-
field shown as dashes.

PASS #2/page #1: Company route label and name (or dashes).
PASS #3/page #1: Takeoff runway label and name (or dashes).

PASS #(4-5)/page #1 and

PASS #(1-5)/not page #1: The various route elements for
the current page and pass. The following list shows
what may be displayed on any route page line.

Waypoint name under the "To" column. The label
"DIRECT" will automatically appear under the "via"
column.

Route function name under the "Via" column. The
exit waypoint name, or box prompts, is shown under the
"To" column.

Route discontinuity marker. Shown with box prompts
if previous line does not contain a route function
with box prompts as the exit waypoint.

~240-

Dash prompts for the first display line
not contain any of the above. Only shown
PRMT booclean is set.

The line corresponding to the page/pass
blanked when none of the above is shown.

PASS #6: The dash line and the "<INDEX" and
GLOBAL REFERENCES:

VARIABLES
C_ADR LASTPG PAGE PASS* PMODE PRMT

ARRAYS .
AIRPTS BOXES DASHES RTE_CNT

RECORD ARRAYS
RTE_MOD

FUNCTIONS AND SUBROUTINES
EXIT FMTOUT GET_LONG TITLE TYPE WPT

which does
when the

iteration is

"ERASE>" tags.

-241-

MODULE NAME: WAYPOINT

FILE NAME: ROUTE.FOR

PROCESS: SLOW

CALLED BY: ADD_WPT, DATA_IN, MODIFY, RT_NEW
CALLING SEQUENCE: CALL WAYPOINT (ADDR, TYPE, INDEX, APPEND)
PURPOSE:

To insert a waypoint into the route buffer.

DESCRIPTION:

This procedure enters a waypoint into the route buffer.
Processing varies for the different waypoint types. 1In
append mode the new waypoint is simply added to the end of
the route buffer. Otherwise an insertion, possibly with the
creation of route discontinuities, into the buffer is
performed. When insertion occurs the following route
elements, including the one at the selected position, are
moved ahead in the route buffer.

There are four input parameters to WAYPOINT. The first
is the database address of the entered waypoint. Next is
the waypoint type (GRP, NAVAID, ...). The third parameter
is an index into the route buffer to the selected position.
The last parameter is a flag used to identify append mode.

A special situation arises when a runway number is
entered as a waypoint. Two waypoints are placed into the
route buffer and all following elements are deleted. The
two waypoints are created pilot waypoints given the names
APnnx and TDnnx. The "nn" field is the runway number and
the "x" is either "L", "R", or "X" (left, right, neither).
The "TD" waypoint is placed at the runway touchdown point
and the "AP" waypoint is positioned three nautical miles out
at an elevation of 1005 feet above the runway.

The remaining waypoint types are handled the same.

First the append flag is tested. In this mode the entered
waypoint is placed in the next available route buffer
location. When not in append mode other tests must be
made.

If the waypoint is inserted at a route discontinuity, two
things can occur. If the entered waypoint is already in the
route buffer further along the flight plan, the route buffer
elements between the insertion position and the next
occurence of the waypoint are deleted and the discontinuity
is removed. Otherwise the new waypoint is inserted at the
desired position, moving the following elements ahead one
position, preserving the route discontinuity.

If the waypoint entry was not made to fill in an
undefined route function exit waypoint, the waypoint
is inserted and a test is made to determine if the new
waypoint is a valid entry waypoint to a route function
defined in the next location. If the next element is not
a route function or the new waypoint does not qualify as
an entry waypoint, a route discontinuity is inserted
following the new waypoint.

~242-

When the entry was made to fill in an undefined exit
waypoint, it is tested to verify its definition as part
of the route function. For one-directional route
functions (SID/STAR/APPROACH) a sequence check is made
to ensure the exit comes after the entry waypoint. The
last step is to look ahead for another occurrence of
the entered waypoint. If it does the waypoint up to
and including the duplicate are removed.

GLOBAL REFERENCES:

VARIABLES
ERCODE*

ARRAYS
AIRPTS* RTE_CNT

RECORD ARRAYS
RTE_MOD*

FUNCTIONS AND SUBROUTINES
BREAK EXIT GET_CHAR GET_REAL MAKE WPT MERGE NEW POS OPEN

REMOVE RTE_WPT SEQUENCE

=-243-

MODULE NAME: WPT_1ID

FILE NAME: ROUTE.FOR

PROCESS: SLOW

CALLED BY: ADD WPT, DATA 1IN, RT_NEW, DIRECT,

INITUP, WPT_ADDR
CALLING SEQUENCE: CALL WPT_ID(COUNT, ADDRESS, TYPE)

PURPOSE:
To identify the entered waypoint name.

DESCRIPTION:

This procedure is called when the name of a waypoint
is entered on the CDU. The system database (AADCOM) and
the pilot defined waypoint buffer (PPT_WPT) are searched
to determine validity and type of the waypoint. Note
that this module may create pilot waypoints for global
position entries such as absolute LAT/LON.

There is one input and three output parameters in the
call list. The count value is the number of characters
in the waypoint name, which is stored in the global
buffer ENTRY. The address and type parameters are filled
in once the waypoint has been identified. If the waypoint
is not found, the address variable is returned to the
caller zeroed.

The clearance pages of the CDU allow the use of global
position references where waypoint names are normally
entered. These are in the form LATITUDE/LONGITUDE or
WAYPOINT/BEARING/RANGE. The first defines an absolute
global position in terms of geographic coordinates. The
second defines a position relative to a known reference
point. When WPT ID is called with a global reference as
the waypoint name, the waypoint is first created in the
pilot waypoint buffer. Then the address and type are
returned as if the waypoint had previously existed and
was found by the database search. When the relative
reference form is used, the same validity checks are made
for the reference waypoint as is done for standard way-
point identification.

The identification of waypoints depends on length and
content of the entered waypoint name. The waypoint ID
process is outlined below.

2 Character: Must be a runway number. A blank is appended
and the runway lookup utility is called.

3 Character: Either a runway or a Navaid. If the first
characer is a digit it is treated as a runway. Other-
wise the Navaid lookup utility is called.

-244-

4 Character: Either an airfield name or "PPOS". 1If the
entry is "PPOS" a pilot waypoint is created as mentioned
above. Note that the entry "pPOS"/BEARING/RANGE is a
a valid entry which creates two pilot waypoints. If
not "PPOS"™ the airfield lookup utility is called.

5 Character: Either a GRP or a previously created pilot
waypoint. First the GRP lookup utility is called. If
successful the GRP data is returned. If not, the pilot
waypoint lookup is invoked.

In all the above cases an €rror code is set when the various
lookup procedures do not find the waypoint name in the
database.

GLOBAL REFERENCES:

VARIABLES
ERCODE* LAT LON STRING

ARRAYS
AIRPTS ENTRY

RECORD ARRAYS
PPT_WPT

FUNCTIONS AND SUBROUTINES
AIRPORT DEGVAL FIND PPT FLTVAL GET_REAL LUGRP LUNAVA LURWY

MAG_VAR MAKE_WPT NEW_POS SLASH

-245-

MODULE NAME: XYPOS

FILE NAME: RTE_INTC.FOR
PROCESS: SLOW

CALLED BY: RTE INTC

CALLING SEQUENCE: CALL XYPOS (PTR, LAT,LON, X, Y)

PURPOSE:
To compute waypoint coordinate offsets.

DESCRIPTION:

This procedure is passed an address pointer of a way-
point entry within a database route. Also a reference way-
point’s latitude and longitude are passed. The data for the
route waypoint is located in the database and it’s LAT/LON
coordinates are fetched. The North and East offsets from
the reference position are then calculated through a call to
the utility GRID.

GLOBAL REFERENCES:

FUNCTIONS AND SUBROUTINES
GET_LONG GET_ REAL GRID

-247-

Section 6.3.7 THE ROUTE INDEX PAGE

The ROUTE INDEX page is accessed via the "<INDEX" prompt
which appears on the lower portion of the ROUTE, LEGS, and
LEGS TIME pages. It mainly serves as an index page with
prompts which may be selected to activate other pages. See
figure 6.10 on the following page.

The file RTENDX.FOR contains the two subroutines for the
Route Index page. The main module puts up a menu on the CDU
screen and accepts pilot entries. All the left hand LSKs
are used for selection of CDU pages involved with flight
plan creation and modification. The upper right side LSK is
used to request the vertical profile generation process on
the current path (not implemented).

The two module discriptions are provided on the following

pages.

PRECEDING PAG
RAct A0 1ETONALLY LA E BLANK NOT FilMED

-249-

RTE INDEX 1/1

SELECT COMPUTE
<TIME VERT PATH>

<WIND

<RTE LEGS

<ROUTE
<FROM WPT

The Route Index Page

(figure 6.10)

pace 1Y oy sane PRECEDIG BAGE ! ANX NGT FLMED

-251-

MODULE NAME: PGA

FILE NAME: RTENDX.FOR
PROCESS: SLOW
CALLED BY: RTENDX

CALLING SEQUENCE: CALL PGA
PURPOSE:

A dummy module to be replaced by PGA4D algorithm when
complete.

prae SO INTENTIONALLY BLANR PRECEDING PAGE W' AMX NGT FH_MED

-252-

MODULE NAME : RTENDX
FILE NAME: RTENDX.FOR
PROCESS: SLOW
CALLED BY: CDUEXC

CALLING SEQUENCE: CALL RTENDX

PURPOSE:
To serve as the executive module for the ROUTE INDEX

page.

DESCRIPTION:

This module receives keyboard inputs and updates the
CDU screen for the ROUTE INDEX page. The following chart
lists the enties processed by RTENDX.

Page change selections. 1If data exists, it is reprog-
rammed into the scratch pad. (LSK-L1 through LSK-L5)
The PGA (dummy) module is called when requested.
(LSK-R1)

A line of the display screen is updated every time
before exiting this module. The screen is completely
refreshed every eight calls. RTENDX has a static display
so no special processing occurs for the line updates.

GLOBAL REFERENCES:

VARIABLES
ERCODE* FROMPG* PGINIT* PGRQST*

ARRAYS
ENTRY*

FUNCTIONS AND SUBROUTINES
FMTOUT PGA REPROG

VARIABLES
ERCODE* FROMPG* PGINIT* PGRQST*

-253-

Section 7.0 THE INITIALIZATION AND REFERENCE PAGES

There are a group of CDU pages refered to as the initial-
ization and reference pages. They are used for the setting
of some initial aircraft parameters, and the inspection of
information pertaining to aircraft systems.

All but two of the pages are accessed through the
INIT/REF index page which is selected by the INIT/REF key
on the CDU keyboard. The EPR Limit and Progress pages each
have their own CDU key to provide direct access to the page.

The remainder of section seven contains descriptions of
the INIT/REF CDU pages and the sofware modules which manage

them.

-255-

Section 7.1 THE INIT/REF INDEX PAGE

The INIT/REF page, also called the "index" page, dis-
plays seven prompts for page changes and accepts a Line
Select Key (LSK) input directing a transfer to a corres-
ponding page. This page is, effectively, a "menu" page.
The diagram on the following page (figure 7.0) shows the
CDU page selections available on the INIT/REF index page.

The INIT/REF code consists of a single FORTRAN module
on the file INITREF.FOR.

PAGE J5°/ WITITONALLY BLAMR pRCENRIG PAGE B AN NCT TUMED

-257-

INIT/REF INDEX 1/1

<IDENT STATUS?>
<POS TEST>
<PERF/BARO SET GPS>
<TAKEOFF

<APPROACH

<NAV DATA

The Init/Ref Index Page

(figure 7.0)

v PRECEDING PAGE BLANK NOT FILMED
PAOE X SCo TTITIANAILY BLAMR

-259-

MODULE NAME: INITREF
FILE NAME: INITREF.FOR
PROCESS: SLOW

CALLED BY: CDUEXC

CALLING SEQUENCE: CALL INITREF

PURPOSE:
To display a menu of CDU pages and to enable their
selection by pressing the associated key.

DESCRIPTION:

The INIT/REF page, also called the INDEX page, displays
seven prompts for page changes and accepts a Line Select Key
(LSK) input to cause a transfer to one of those pages. The
code refreshes one CDU line per pass. When there is a
function key input, it is processed through a "calculated
goto" structure in which the appropriate page is called or
an error message displayed.

GLOBAL REFERENCES:

VARIABLES
ERCODE* PGINIT* PGRQST*

ARRAYS
ENTRY*

FUNCTIONS AND SUBROUTINES
FMTOUT REPROG

gaee_ D0 _iiiciiuNALLY b PRECEDING PAGE HLANX NOT FiLMED

-261-

Section 7.2 THE SYSTEM IDENTIFICATION PAGE

The IDENT page is the startup CDU display; it is auto-
matically displayed at system startup and remains active
until the operator validates the time at key LSK-L5. The
operator may do so by entering a time through the scratch
pad or by pressing the key with a blank scratch pad. This
forces use of the time from the Data Acquisition System
(DAS). Date entry is optional. This display alsoc includes
two page-request choices, INDEX and POS_INIT, at key 6, left
and right. Refer to figure 7.1 on the following page.

The IDENT page is coded in a single FORTRAN module.

) BLANR
CIVLIONALLY PRECEDING PAGE BLANK NOT FILMED

N
vavt_eple0

IDENT

MODEL
NASA 3515
NAV DATA
TDWR DEN
OP PROGRAM

GMT
1246:37

<I/R INDEX

The System Identification Page

(figure 7.1)

PAGE_ 0L INTENTIONALLY BLANK

1/1

ENGI NES

JT8D-7
DATE

06/27/91

AR SR RPN

-263-

WLISTSL ST

-265-

MODULE NAME: IDENT
FILE NAME: IDENT.FOR
PROCESS: SLOW
CALLED BY: CDUEXC

CALLING SEQUENCE: CALL IDENT

PURPOSE:

To display startup data regarding the aircraft and the
software versions, and to take operator input for the time
and date.

DESCRIPTION:

The IDENT page is automatically displayed at system
startup and it remains active until the operator validates
the system time at key LSK-L5. No other action is accepted
until this is done. An actual time may be entered in the
form "nnnn:nn," or the key may be pressed with a blank
scratch pad to force use of the Data Acquisition System
(DAS) time.

Date entry is optional and any 8-character input 1is
acceptable. The only other options on this page are the
page-request choices at key 6 (L & R) for the INDEX and
POS_INIT pages.

GLOBAL REFERENCES:

VARIABLES
ERCODE HRSS MINS PGINIT* PGRQST* TIME TIME VLD

ARRAYS
BOXES BULK_ID ENTRY*

FUNCTIONS AND SUBROUTINES
BCDTIM DEL IN FMTOUT FMTTIM REPROG TIMVAL

PABE_\o Y INTENTIONALLY BLAMK Ay e
B LA A S SR> 3 'E';~‘;5';K :\'k‘llﬂ :”_MED

-267-

Section 7.3 THE REFERENCE NAVIGATION DATA PAGE

The REF NAV DATA page is used by the flight crew for
identification of items such as waypoints, navaids and
airports. If an item is requested via the CDU keypad,
it is looked up in AADCOM and if found, the appropriate
subpage is displayed. Information about the requested item
is displayed on the subpage and the symbol for the
requested item appears on the map display. If the item is
not found in AADCOM, an informative message is displayed.

The format of the NAV DATA "root" page is shown on the
follwing page (figure 7.2).

PRECEDING PAGE BLANK NOT FiLME
Y BLAMK ; D
orgE l(plp INTENTIONALL

~-269-

REF NAV DATA 1/1

WAYPO INT NAVAID

AIRPORT AIRWAY

<I/R INDEX

The Navigation Data
Page

(figure 7.2)

) q
PAGE a fab INFENTIONALLY BLAMK ooe cEDING PAGE BLANK NOT FILMED

-271-

MODULE NAME: AIR INPUT
FILE NAME: AIRWAY.FOR
PROCESS: SLOW
CALLED BY: NAVPG

CALLING SEQUENCE: CALL AIR INPUT

PURPOSE:
To handle CDU entries on the airway waypoint page.

DESCRIPTION:

This module handles CDU keyboard entries while on the
airway waypoint subpage of the NAV data page. The valid
entries are listed below. Note that only function entries
are allowed. If data is on the scratch pad when return to
the "root" page is requested, it will be reprogrammed onto
the scratch pad for use on the main NAV data page.

LSK-L1 through LSK-L5 Echo waypoint name to scratch pad
LSK-R1 through LSK-R5 Select map center waypoint

LSK-R6 Erase airway waypoints

NEXT Next display page

PREV Previous display page

Selecting a NAV format display center waypoint may be
done when one of the Map displays is in "North Up" mode.
The CDU display will show a "<CTR>" bug along side the
chosen waypoint. The Map center selection is passed to the
procedure SET_CENTER to signal the displays. When exiting
from the airway waypoint display, LOKWPT is cleared to
remove the airway waypoints from the Map display.

GLOBAL REFERENCES:

VARIABLES
AIR ADR AIR CNT AIR LAST AIR PG AIR_PTR* DISPST ERCODE*
PAGE* PGRQST*

ARRAYS
ENTRY LOKWPT*

FUNCTIONS AND SUBROUTINES
FMTOUT GET LONG NAME LEN REPROG SET CENTER

PACGE 370 INTENTIONALLY BLAMK

TAGEN G MASE BLARK NOT F

ILMED

-272-

MODULE NAME: AIR PAGE

FILE NAME: AIRWAY.FOR
PROCESS: SLOW

CALLED BY: NAVPG
CALLING SEQUENCE: CALL AIR PAGE
PURPOSE:

To display the airway waypoint page.

DESCRIPTION:

This module formats the CDU display data for the air-
way waypoints subpage of the NAV data CDU page. The entire
screen is refreshed in six consecutive passes through this
procedure. On pass "0" the title line and key labels are
sent out. On passes "1" through "5", the five line pairs of
the display page are filled with waypoint name and LAT/LON
values.

The waypoints of an airway are displayed in sets of
five. The "NEXT" and "PREV" page keys may be used to view
different sets of five waypoints within the airway. This
module uses the global variables AIR ADR and AIR PG to find
the waypoint information in AADCOM for the current page.

The starting address of the airway is in AIR ADR and the
current airway waypoint page number is saved in AIR PG.

The text "<CTR>" is shown on the right side of the line
containing the selected Map center waypoint when one of the
Map display formats is in "North Up" mode. The global
variable DISPST (bit mask 2000 hex) indicates a "North Up"
Map. The index within the airway of the selected Map center
waypoint is obtained from the global variable AIR PTR.

GLOBAL REFERENCES:

VARIABLES
AIR_ADR AIR_CNT AIR_LAST AIR PG AIR PTR DISPST

ARRAYS
DASHES

FUNCTIONS AND SUBROUTINES
FMTDEG FMTOUT GET_LONG GET_REAL NAME LEN

-273-

MODULE NAME: CLEAR ENTRY
FILE NAME: NAVPG.FOR
PROCESS: SLOW

CALLED BY:

CALLING SEQUENCE: CALL CLEAR ENTRY

PURPOSE:
To fill the array OUTLINES with blanks.

DESCRIPTION:

This routine blanks all the character data in the array
OUTLINES, so that all the old information can be removed
from the REF NAV DATA page of the CDU display before new
information is added.

GLOBAL REFERENCES:

VARIABLES
OUTLINES*

-274-

MODULE NAME: LIST_INPUT
FILE NAME: AIRWAY.FOR
PROCESS: SLOW
CALLED BY: NAVPG

CALLING SEQUENCE: CALL LIST INPUT

PURPOSE:
To handle inputs on the airway list page.

DESCRIPTION:

This module handles CDU keyboard entries when on the
airway list subpage of the NAV data page. LSK-L1 through
LSK-L5 and LSK-R1 through LSK-R5 are used to echo airway
names to the scratch pad. Other keys that are used are
LSK-L6, LSK-R6, NEXT page, and PREV page. LSK-L6 is used to
toggle between Jet and Victor airways. LSK-R6 returns to
the NAV Data "root" page.

Up to ten airway names are shown per CDU airway list
page. All the airway names in the current list (Victor or
Jet) may be viewed ten at a time using the NEXT and PREV
keys.

The airway name echoed to the scratch pad is obtained
from the navigation database (AADCOM). An index into the
current airway list is computed from the airway list page
index and the line select key used. This index is passed to
the function NAME PTR to obtain the address of the name
within AADCOM.

Switching between Jet and Victor airway lists is done
by a call to SET_LIST. The index of the desired list type
is passed to this procedure.

GLOBAL REFERENCES:

VARIABLES
AIR CNT AIR LAST AIR PG AIR TYPE ERCODE* PAGE* PGRQST*

ARRAYS
ENTRY

FUNCTIONS AND SUBROUTINES
FMTOUT NAME PTR REPROG SET_LIST

-275-

MODULE NAME: LIST PAGE
FILE NAME: AIRWAY.FOR
PROCESS: SLOW
CALLED BY: NAVPG

CALLING SEQUENCE: CALL LIST_PAGE

PURPOSE:
To display the CDU airway list page.

DESCRIPTION:

This module formats CDU display text for the airway
list subpage of the NAV Data page. The entire screen is
refreshed every six calls to this module. On pass "0" the
title line and fixed labels are sent out. On passes "1"
through "5" the available airway names for the current list
type (Jet or Victor) are shown, two per line.

The global variable AIR TYPE indicates which type list
is being shown. The title line will contain the name of
the current list type. Also the LSK-L6é6 label will contain
the prompt to select the list type not currently chosen.

The variable "PASS" is used to keep track of where in
the update cycle the module is. When PASS indicates one of
the five lines containing airway names should be updated, an
index into the airway list is computed for the two airway
names which will be shown on that line. The function
NAME_PTR is sent these indices to return the addresses in
AADCOM of the names of the airways.

GLOBAL REFERENCES:

VARIABLES
AIR_LAST AIR PG AIR TYPE

ARRAYS
DASHES

FUNCTIONS AND SUBROUTINES
FMTOUT NAME PTR

-276-

MODULE NAME: MAGV

FILE NAME: NAVPG.DOC

PROCESS: SLOW

CALLED BY: PROCESS ARP, PROCESS_GRP, PROCESS_NAV

CALLING SEQUENCE: X = MAGV(LAT, LON)

PURPOSE:
To format the magnetic variation for the given coordinates.

DESCRIPTION:

This routine calls MAG VAR with a latitude and longitude to
compute the magnetic variation at a certain location. Then it
converts the value to character data and formats it for output.

GLOBAL REFERENCES:

FUNCTIONS AND SUBROUTINES
FSTRNG MAG_VAR

-2717-

MODULE NAME: NAME LEN
., FILE NAME: AIRWAY.FOR
PROCESS: SLOW
CALLED BY: AIR_INPUT AIR_PAGE
CALLING SEQUENCE: LENGTH = NAME_LEN (WPT_ADDRESS)
PURPOSE:

To find the length of a waypoint name.

DESCRIPTION:

The address of a navigation database waypoint is sent
to this function. The function TYPE WPT is then called to
determine the type of the waypoint. The length is assigned
from type as follows.

Navaid 3 characters

Airfied 4 characters

GRP 5 charcaters
GLOBAL REFERENCES:

FUNCTIONS AND SUBROUTINES
TYPE_WPT

-278-

MODULE NAME: NAME PTR

FILE NAME: AIRWAY.FOR

PROCESS: SLOW

CALLED BY: LIST INPUT LIST PAGE

CALLING SEQUENCE: ADDRESS = NAME PTR (INDEX)

PURPOSE:
To find an airway name within an airway list.

DESCRIPTION:
This module returns the address of the airway name

which is located in the position within the current airway
list indicated by the calling parameter, INDEX. If the
requested position is past the end of the airway list, a
pointer to a blank character field is returned.

GLOBAL REFERENCES:

VARIABLES
AIR _ADR AIR_CNT

FUNCTIONS AND SUBROUTINES
GET_LONG

-279-

MODULE NAME: NAV_INPUT

FILE NAME: NAVPG.FOR
PROCESS: SLOW

CALLED BY: NAVPG

CALLING SEQUENCE: CALL NAV_INPUT
PURPOSE:

To parse CDU keyboard entries for the main REF NAV DATA
page.

DESCRIPTION:

This subroutine is called when a keyboard entry is detected
while on the main REF NAV DATA page. Valid entries on this
page are limited to the following:

Requesting the INDEX page. If there is data in the
scratch pad, it is reprogrammed into the scratch pad for
use by the requested page.

Requesting the display of information about any waypoint,
navaid, airway, or airport which is contained in the
navigation database (AADCOM) .

Upon receipt of a valid data entry, some initialization
variables are set, including the PAGE variable which is set
to reflect the page number of the page appropriate for the
requested item type. Note that information for a waypoint,
navaid or airport can be requested using either LSK-L1,
LSK-L2, or LSK-R1l, although the labelling of the LSKs
implies that a certain LSK must be used to request
information about a certain type of item. For airways
information, LSK~R2 is used exclusively.

GLOBAL REFERENCES:

VARIABLES
ERCODE* PGRQST*

ARRAYS
ENTRY

FUNCTIONS AND SUBROUTINES
DEL_IN PROCESS_AIRWAY PROCESS_ARP PROCESS_GRP PROCESS_NAV
REPROG SET_LIST

-280-

MODULE NAME: NAVPG

FILE NAME: NAVPG.FOR
PROCESS: SLOW
CALLED BY: CDUEXC
CALLING SEQUENCE: CALL NAVPG
PURPOSE:

To serve as the REF NAV DATA page executive module.

DESCRIPTION:

This subroutine is the main procedure for the REF NAV
DATA page software. It performs a few top-level functions
beginning with first pass initialization and the computation
of a few variables used by other modules. Input to the REF
NAV DATA page is handled by the module NAV _INPUT, unless one
of the subpages is active. The procedure SUBNAV INPUT is
called for all subpages except for alrway information. For
airways either AIR INPUT or LIST_INPUT is called depending
on the airway information shown. The screen is updated by a
call to REFRESH except when on an airway subpage. Airway
data updates are made by a call to either the procedure
AIR_PAGE or LIST PAGE.

GLOBAL REFERENCES:

VARIABLES
PAGE PASS* PGINIT*

ARRAYS
ENTRY* OUTLINES*

FUNCTIONS AND SUBROUTINES
AIR INPUT AIR PAGE CLEAR ENTRY LIST_INPUT LIST PAGE
NAV INPUT REFRESH SUBNAV INPUT

-281-

MODULE NAME: PROCESS AIRWAY
FILE NAME: AIRWAY.FOR
PROCESS: SLOW

CALLED BY: NAV INPUT

CALLING SEQUENCE: CALL PROCESS ATRWAY

PURPOSE:
To handle requests for the airway waypoints page.

DESCRIPTION:

This module is called when an airway name is entered on
the NAV Data page of the CDU for display of the waypoints
contained within it. Global variables are set up to enable
the airway waypoint display subpage. If the requested
airway is not found in the database an error code is set
and the subpage is not enabled.

The following list of global variables are set by this
procedure when the requested airway is found in the data-
base.

AIR PG Current airway waypoints subpage is
initialized to the first page.

AIR PTR Map center waypoint 1is initialized to the

- first waypoint on the airway.

AIR CNT Number of waypoints on the airway is determined
by stepping through the database.

AIR LAST Nuumber of subpages required to show all the
airway waypoints, five per page.

PAGE Set to "4" to indicate the airway waypoint page.
is active from the NAV Data "root" page.

LOKWPT The airway address and ID code are set in this

array to cause the displays to place the
selected airway on the Map format.

The subroutine SET CENTER is called to set the Map center
latitude and longitude from the Map center waypoint index
(AIR PTR). This is used by any Map display format in
"North Up" mode.

GLOBAL REFERENCES:

VARIABLES
AIR_ADR AIR CNT AIR LAST* AIR PG* AIR PTR* ERCODE* INDAT
PAGE*

ARRAYS
ENTRY LOKWPT*

FUNCTIONS AND SUBROUTINES
GET_LONG LUJET LUVIC SET_CENTER

-282-

MODULE NAME: PROCESS_ARP

FILE NAME: NAVPG.FOR

PROCESS: SLOW

CALLED BY: NAV_INPUT, SUBNAV_INPUT
CALLING SEQUENCE: CALL PROCESS_ARP
PURPOSE:

To locate an airport in the navigational database and
format information for display on the REF NAV DATA page.

DESCRIPTION:

This routine is called to update the contents of the
array OUTLINES, which contains appropriate informational
data for display on the REF NAV DATA page. Initially,
this routine looks up an airport in the navigational data
base (AADCOM), with a call to LUARP. If found, it
fetches informational data for that airport, performs any
formatting or character conversion and stores the
information in the array, OUTLINES. It stores the
address of the airport and an airport type code in LOKWPT,
so that the airport can be displayed on the MAP display
format. Also, the variables LATCEN and LONCEN are set to
the latitude and longitude of the specified airport, for
the purpose of specifying the center of the MAP format.

If the requested airport is not found in AADCOM an
appropriate error message is displayed.

Note that prior to looking up the airport in AADCOM,
the previous item address is stored off. This handles the
particular case where airport information is currently
displayed and a different airport is requested. If the new
airport is not found, the original information remains on
the CDU display. Then if a runway for the displayed
airport is requested, the original airport address is
available to look up the runway.

GLOBAL REFERENCES:

VARIABLES
ADDR ERCODE* LATCEN* LONCEN* NLAT NLON PAGE* PASS* TARP

ARRAYS
ENTRY LOKWPT* OUTLINES*

FUNCTIONS AND SUBROUTINES
CLEAR_ENTRY FMTDEG FMTOUT FSTRNG GET_REAL LUARP MAGV
GET_WORD LUNAVA MAGV

-283-

MODULE NAME: PROCESS GRP
FILE NAME: NAVPG.FOR

PROCESS: SLOW

CALLED BY: NAV_INPUT, SUBNAV_INPUT
CALLING SEQUENCE: CALL PROCESS_GRP
PURPOSE:

To locate a waypoint in the navigational database and
format information for display on the REF NAV DATA page.

DESCRIPTION:

This routine is called to update the contents of the
array OUTLINES, which contains appropriate informational
data for display on the REF NAV DATA page. Initially,
this routine looks up a waypoint in the navigational data-
base (AADCOM), with a call to LUGRP. If it is not found, it
searches for the requested waypoint in the pilot defined
waypoint buffer. If the waypoint is not located in either
place, an appropriate error message is displayed.

If the waypoint is found in either AADCOM or the
pilot defined waypoint buffer, this routine then fetches
informational data for that waypoint, performs any for-
matting or character conversion and stores the information
in the array, OUTLINES. Note that the information
displayed for a pilot defined waypoint differs slightly
from the information diplayed for a waypoint which is
contained in the navigation database. 1In either case,
this routine stores the address of the waypoint and a
waypoint type code in LOKWPT, so that the waypoint can be
displayed on the MAP display format. Also, the variables
LATCEN and LONCEN are set to the latitude and longitude of
the specified waypoint, for the purpose of specifying the
center of the MAP format.

GLOBAL REFERENCES:

VARIABLES
ADDR ERCODE* LATCEN* LONCEN* NLAT NLON PAGE* PASS* TGRP

ARRAYS
ENTRY LOKWPT* OUTLINES*

RECORD ARRAYS
PPT_WPT

FUNCTIONS AND SUBROUTINES
CLEAR_ENTRY FIND PPT FMTDEG FMTOUT LUGRP MAGV

-284-

MODULE NAME: PROCESS_NAV

FILE NAME: NAVPG.FOR

PROCESS: SLOW

CALLED BY: NAV_INPUT, SUBNAV_INPUT
CALLING SEQUENCE: CALL PROCESS NAV
PURPOSE:

To locate a navaid in the navigational database and
format information for display on the REF NAV DATA page.

DESCRIPTION:

This routine is called to update the contents of the
array OUTLINES, which contains appropriate informational
data for display on the REF NAV DATA page. Initially,
this routine looks up a navaid in the navigational data-
base (AADCOM), with a call to LUNAVA. 1If found, it
fetches informational data for that navaid, performs any
formatting or character conversion and stores the
information in the array, OUTLINES. It stores the
address of the navaid and a navaid type code in LOKWPT,
so that the navaid can be displayed on the MAP display
format. Also, the variables LATCEN and LONCEN are set to
the latitude and longitude of the specified navaid, for
the purpose of specifying the center of the MAP format.
If the requested navaid is not found in AADCOM an
appropriate error message is displayed.

GLOBAL REFERENCES:

VARIABLES
ADDR ERCODE* LATCEN* LONCEN* NLAT NLON PAGE* PASS* TNAV

ARRAYS
ENTRY LOKWPT* OUTLINES*

FUNCTIONS AND SUBROUTINES
CLEAR ENTRY FMTDEG FMTOUT FRMFRQ FSTRNG GET BYTE GET_ REAL
GET WORD LUNAVA MAGV

-285-

MODULE NAME: PROCESS_RWY

FILE NAME: NAVPG.FOR
PROCESS: SLOW

CALLED BY: SUBNAV_INPUT
CALLING SEQUENCE: CALL PROCESS_RWY
PURPOSE:

To locate a runway in the navigational database and
format information for display on the REF NAV DATA page.

DESCRIPTION:

This routine is called to update the contents of the
array OUTLINES, which contains appropriate informational
data for display on the REF NAV DATA page. This routine
looks up a runway in the navigational database (Bulk
Data), beginning the search at a specified airport address,
with a call to LURWY. 1If found, it fetches informational
data for that runway, performs any formatting or character
conversion and stores the information in the array,
OUTLINES. It stores the address of the runway and a
runway type code in LOKWPT, so that the runway can be
displayed on the MAP display format. If the requested
runway is not found in AADCOM an appropriate error
message is displayed.

GLOBAL REFERENCES:

VARIABLES
ADDR ERCODE* TRWY

ARRAYS
ENTRY LOKWPT* OUTLINES*

FUNCTIONS AND SUBROUTINES
FSTRNG GET_REAL LURWY

MODULE NAME: REFRESH
FILE NAME: NAVPG.FOR
PROCESS: SLOW

CALLED BY: NAVPG
CALLING SEQUENCE: CALL REFRESH
PURPOSE:

To update the CDU display for the REV NAV DATA pages.

DESCRIPTION:

This subroutine updates the CDU display for the REF NAV
DATA page with calls to FMTOUT. The entire screen is updated
every sixteen consecutive calls to this subroutine. The value
of PASS determines which particular lines are updated. During
the first call of the cycle, the page title is output along
with an indication of the current and last page numbers.
Information about the requested item is displayed on lines #1
through #10. Line #11 contains dashes and line #12 contains a
label for the LSK which provides access to the INDEX page. If
information is presently being displayed on the REF NAV DATA
page, then line #12 also contains a label for the LSK which
enables the erasure of the information.

GLOBAL REFERENCES:

VARIABLES
PAGE PASS*

ARRAYS
DASHES OUTLINES

FUNCTIONS AND SUBROUTINES
FMTOUT

-287-

MODULE NAME: SET_CENTER

FILE NAME: AIRWAY.FOR

PROCESS: SLOW

CALLED BY: PROCESS AIRWAY, AIR _INPUT, NAVPG
CALLING SEQUENCE: CALL SET CENTER

PURPOSE:

To set the Map center LAT/LON.

DESCRIPTION:

This module fetches the latitude and longitude of the
airway waypoint chosen as the Map center position. The
global variable AIR PTR is the index of the waypoint within
the currently displayed airway. The variables LATCEN and
LONCEN are set for use by the NAV display format. The
values are found by using the start address (AIR ADR) and
an offset computed from the Map center index to access the
waypoint address. See the database description (AADCOM)
in section 6.1.1 for the structure of airways within the
database.

GLOBAL REFERENCES:

VARIABLES
AIR ADR AIR PTR GDTIME* LATCEN* LONCEN*

FUNCTIONS AND SUBROUTINES
GET_LONG GET REAL

-288-

MODULE NAME: SET_LIST

FILE NAME: AIRWAY.FOR

PROCESS: SLOW

CALLED BY: NAV INPUT LIST INPUT

CALLING SEQUENCE: CALL SET_LIST (AIRWAY_TYPE)

PURPOSE:
To handle requests for the airway list page.

DESCRIPTION:

This procedure is called to enable the airway list
page, when LSK-R2 is pressed with no data on the
scratch pad, on the NAV Data page of the CDU. It is passed
the type of airway 1ist desired in the calling sequence
(0: Jet airway 1: Victor airway).

The following global variables are set up by this
procedure to enable the airway list page.

AIR PG The current airway list subpage is initial-
- ized to the first one.

AIR TYPE set to the index of the requested list type
(Jet or Victor).

AIR ADR Set to the starting address within the data-
base of the airway list.

AIR CNT Set to the number of airways in the list.

AIR LAST Set to the number of pages required to show
all the airway names in the list (10 per page).

PAGE Set to "5" to indicate the airway list page of

the NAV data page is enabled.

Refer to section 6.1.1 for the structure of airway lists
in the navigation database (AADCOM) .

GLOBAL REFERENCES:

VARIABLES
AIR_ADR AIR_CNT AIR LAST* AIR PG* AIR_TYPE* JPTR PAGE* VPTR

FUNCTIONS AND SUBROUTINES
GET_LONG

-289-

MODULE NAME: SUBNAV_INPUT
FILE NAME: NAVPG.FOR
PROCESS: SLOW

CALLED BY: NAVPG

CALLING SEQUENCE: CALL SUBNAV_INPUT

PURPOSE:

To parse CDU data entries for the navaid data subpage,
the waypoint data subpage or the airport data subpage of
the REF NAV DATA page.

DESCRIPTION:

This subroutine is called when a data entry is detected
while on one of the three informational subpages of the REF
NAV DATA page. Valid entries on this page are limited to
the following:

Requesting the INDEX page. If there is data in the
scratch pad, it is reprogrammed into the scratch pad for
use by the requested page.

Requesting the display of information about any waypoint,
navaid or airport which is contained in the navigation
database (AADCOM). Upon receipt of a valid data

entry, some initialization variables are set, including
the PAGE variable which is set to reflect the page number
of the page appropriate for the requested item type.

Note that information may be requested for a waypoint,
navaid or airport from any of the three informational
subpages.

Erasing the display of waypoint, navaid or airport
information. The main REF NAV DATA page is then displayed
and the item is also removed from the MAP display format.

If information on an airport is curently displayed, then
information about a particular runway may be requested.

GLOBAL REFERENCES:

VARIABLES
ERCODE* PAGE PGINIT* PGRQST*

ARRAYS
ENTRY LOKWPT*

FUNCTIONS AND SUBROUTINES
DEL IN FMTOUT PROCESS_ARP PROCESS _GRP PROCESS_NAV PROCESS_RWY
REPROG

-291-

Section 7.4 THE INITIAL POSITION PAGE

The "Initial Position" page, labelled INITPOS, displays
the aircraft geographical position and groundspeed and
allows the operator to initialize or modify the position
estimate. It also, on request, displays the location of any
reference point in the database. Refer to figure 7.3 on
the following page.

The INITPOS page is coded in three FORTRAN subroutines
on the file INITPOS.FOR (INITPOS, INITUP, and STRIPR).

PAGE_D7 0 INTENTIONALLY BLAMK AT Pl FLARK NGT FILMED

-293-

POS INIT 1/1

FMC POS 6s 200«kT
N34°00' 00" w075°00'00"

ADIRS POS 6s 200kT
N34°00' 02" w075°59'59"

REF POINT CCV
N37°20'54" W075°59' 59"

<1 /R INDEX ROUTE?>

The Position Initialization Page

(figure 7.3)

PAME_J QL INTENTIONALLY BLAMK
TR MAGE B A NOT FIUMED

-295-

MODULE NAME: INITPOS
FILE NAME: INITPOS.FOR
PROCESS: SLOW
CALLED BY: CDUEXC
CALLING SEQUENCE: CALL INITPOS
PURPOSE:
A) Permits the operator to initialize or modify the
aircraft position estimate.
B) Displays the aircraft position and groundspeed.
C) Displays the location of any reference point in the
database, in response to an operator request.
DESCRIPTION:

INITPOS nominally refreshes one CDU line per iteration,
under the control of a "calculated GOTO" structure. If
there is user input, subroutine INITUP is called first to
take care of that.

The discrete POSMOD controls the display in several
respects, both in the main routine and in INITUP. It is set
in INITUP when the operator inputs a valid Lat/Lon to update
the computed aircraft position. While it is TRUE, the word
"MOD" is displayed in reverse video on the title line of the
CDU. Also, for the FMC position on line #2, the user’s input
is held on static display in reverse video until it is
either accepted or rejected by the user. Finally, on line
#12, the prompts "<ERASE" and "ACCEPT>" are displayed in
place of the usual page change prompts.

Page refreshing is otherwise straightforward except that
position validity is verified by checking the discrete INAVV
and/or LLINIT, and the reference point status by checking
LINE6 ACT. 1If the FMC position hasn’t been initialized, it
is displayed as boxes, indicating that the initialization is
required. At line #5, if a reference point has not been
displayed earlier, the label is output as dashes and the
coordinates line is left blank.

GLOBAL REFERENCES:

VARIABLES
GS GSINS INAVV LAT LATINS LATMP LINE6 ACT LLINIT LON LONINS
LONTMP PGINIT* POSMOD RFCNT

ARRAYS
DASHES ENTRY* LATADIR LATFMC LATRF LONADIR LONFMC LONRF RFID

FUNCTIONS AND SUBROUTINES
FMTDEG FMTOUT INITUP OTSSCVT L TI

RAGE A 9(/ ANTENTIONALLY BLANY DIECERMG M WA aE s Y MU

b
B

Ak

-296-

MODULE NAME: INITUP

FILE NAME: INITPOS.FOR
PROCESS: SLOW

CALLED BY: INITPOS
CALLING SEQUENCE: CALL INITUP
PURPOSE:

To process function key and scratch pad input.

DESCRIPTION:

Subroutine INITUP processes user input which might be
either a position update from the scratch pad, or a function
key command. INITUP is structured as a nested IF/ELSE
command. At the first level, the "IF" block processes
function key inputs, and the "ELSE" block handles data input
from the scratch pad. In each case, all the function keys
are checked. Error messages are sent out for bad data and
for invalid keys. When a position update or display is
called for, FMTDEG is called to generate a latitude and
longitude. Then STRIPR is called to reformat the position
data and display it on the scratch pad. The flag POSMOD is
set when a position update is in progress and it subsequen-
tly controls the interpretation of key input in most cases.

GLOBAL REFERENCES:

VARIABLES
ERCODE* IDDLAT* IDDLON* INAVV INDAT LAT LATINS LATMP LINE6 ACT*
LLINIT LON LONINS LONTMP PGRQST* POSMOD* RFADDR RFCNT

ARRAYS
ENTRY LATADIR LATFMC LATRF LONADIR LONFMC LONRF RFID*

FUNCTIONS AND SUBROUTINES
DEGVAL DEL_IN FMTDEG GET_REAL REPROG STRIPR WPT_ ID

-297-

MODULE NAME: STRIPR

FILE NAME: INITPOS.FOR
PROCESS: SLOW

CALLED BY: INITUP

CALLING SEQUENCE: CALL STRIPR

PURPOSE:

To remove degree, minute, and second symbols from the
byte strings for latitude and longitude and then to print
the position information on the scratch pad as:
Nddmmss/Eddmmss.

DESCRIPTION:

The digits of the latitude and longitude are read into
a byte buffer, a slash is inserted between them, and FMTOUT
is called to print the position on the scratch pad.

GLOBAL REFERENCES:

FUNCTIONS AND SUBROUTINES
FMTOUT

-299-

Section 7.5 THE EPR LIMIT PAGE

The engine pressure ratio (EPR) limits are calculated
in subroutine EPRLMT. The EPRLIM page displays the four EPR
limits, for go-around, maximum continuous thrust, climb, and
cruise. It also permits the operator to change the active
limit by pressing the line select key adjacent to the desired
limit. The active limit is indicated by the "<ACT>" flag
next to it. Additionally, the current EPR for each engine
is listed at the bottom of the display. Refer to figure
7.4 on the following page.

This routine is coded in one FORTRAN subroutine titled

EPRLIM.

PRECEDING PAGE BLANK NOT FILMED

PAGE_)T INTENTIONALLY BLANK

-301-

EPR LIMIT 171

. 983
. 940
. 965
. 900

The EPR Limit Page

(figure 7.4)

pARE 3OO INTENTIONALLY BLANK PRECEDING PAGE BLANY NG FiLMED

-303-

MODULE NAME: EPRLIM
FILE NAME: EPRLIM.FOR
PROCESS: SLOW
CALLED BY: CDUEXC

CALLING SEQUENCE: CALL EPRLIM

PURPOSE:

To print the engine pressure ratio (EPR) limits on the
EPRLMT display and to permit manual selection of the EPR
limit for auto-throttle operations.

DESCRIPTION:

This routine displays EPR limits; it does not compute
them. That is done separately by subroutine EPRLMT.

As illustrated in figure 7.4, the EPR limits are
displayed for go-around, maximum continuous thrust, climb,
and cruise. Additionally, the current EPR for each engine is
displayed at the bottom of the screen.

The code first checks for a function key input,
accepting keys L1 through L4 only. If a valid key was
pressed, the global EPRFLG is set to a number signifying the
selected EPR. If no key was pressed, the routine refreshes
one line of the display per pass. The flag "<ACT>" is shown
adjacent to the selected EPR limit as dictated by EPRFLG.

GLOBAL REFERENCES:

VARIABLES
EC6é EPR1 EPR2 EPRFLG ERCODE* GAEPR MCLEPR MCREPR MCTEPR PGINIT*

ARRAYS
ENTRY*

FUNCTIONS AND SUBROUTINES
FMTOUT OTS$FLOAT

PAGE SO INTENTIONALLY BLAMK PRECEDING PAGE BLANK NOT FILMED

-305-

Section 7.6 THE PROGRESS PAGE

The position of the aircraft and key navigation data
relative to the flight plan are presented on the two
PROGRESS pages. 1In particular, page 1 displays data
pertinent to the active waypoint and to the active 2D, 3D,
or 4D flight path. Page two displays the current position
estimate and the currently selected navaids. This page also
allows the user to transfer the position or DME data to the
scratch pad and to manually reset DME 2 or DME 3. Manual
tuning mode can be toggled to automatic mode, or vice versa,
by pressing the delete key followed by the appropriate line
key. Both pages offer a page change to the Climb, Cruise,
or Descent pages as appropriate for the current flight
phase. Refer to figures 7.5 and 7.6 on the following pages.

This display is coded in two FORTRAN subroutines,
PROGRESS and ACTION, in the file PROGRESS.FOR.

. C i
PAGt._iQ__/_JNmmONALu BLAMNK PRECEDING PAGE BLANX NOT FILMED

-307-

PROGRESS 172

DTG ETA
3.3NmM 1557: 56

FPA XTKE
0.4° 0.82R
FPAE

14NM To RTA WFBBF
1100:00 65 200KT
+0:00: 00 GSE

The Progress Page
(#1)

(figure 7.5)

PRECEDING PAGE BLANX NGy FU'_pa
ppgf 30 INTFATIONALLY BLAM i EU_MED

-309-

PROGRESS 2/2

PPOS
N34°00' 00" w075°00' 00"
DME 2 DME 3
ORF 116.90A LFI 112.30A

NEXT 2

HCM 108.80
NAV SOURCE

The Progress Page
(#2)

(figure 7.6)

pagt R0 INTENTIONALLY BLAMK PRECEDING PAGE BLANK NOT FILMED

-311-

MODULE NAME: ACTION

FILE NAME: PROGRESS.FOR

PROCESS: SLOW

CALLED BY: PROGRESS

CALLING SEQUENCE: CALL ACTION(PASS,PAGE1l)
PURPOSE:

To process user input for the PROGRESS page.

DESCRIPTION:

In subroutine ACTION, function key input is processed
first, beginning with the functions common to both pages.
This includes page requests (CLB, CRZ, DESC) and toggling
between PROGRESS pages 1 and 2. Since no other function is
valid for page 1, processing continues for page 2. For keys
L1l and R1l, the position coordinates are moved to the scratch
pad. For keys L2, R2, and L3, the station identifier is
moved to the scratch pad.

For data input, which is allowed only on page 2 and
only for the navaid identifiers on line 4 (keys L2 & R2),
three letter inputs are used to find the address of a new
navaid. Otherwise, if the DELETE key was pressed and manual
tuning was in effect, then auto-tuning is enabled. Any
other keys or conditions result in an error message.

GLOBAL REFERENCES:

VARIABLES
ATNAVZ* ATNAV3* ATUNE2* ATUNE3* ERCODE* GUID2D INAVV LAT
LLINIT LON NVAD2A* VAD2B NVAD3A* PGRQST* TOWPT

ARRAYS
ENTRY*

RECORD ARRAYS
WPT ACT

FUNCTIONS AND SUBROUTINES
DEL_IN FMTDEG FMTOUT GET_CHAR GET WORD LUNAVA REPROG STRIPR

NTENTIONALLY BLANYy
pate_2[0 PRECEDING PAGE BULANK NUT FILMED

-312-

MODULE NAME: PROGRESS

FILE NAME: PROGRESS.FOR
PROCESS: SLOW

CALLED BY: CDUEXC
CALLING SEQUENCE: CALL PROGRESS
PURPOSE:

A) To display data on the active waypoint and the active
2D, 3D, or 4D flight path.

B) To display and allow changes to the tuning of the
navigation radios.

C) To determine which page change prompt to offer, and to
request that change in response to key input.

DESCRIPTION:

The PROGRESS page 1 allows the flight crew to observe
data pertinent to the active waypoint and to the active 2D,
3D, or 4D flight path. Page 2 displays the aircraft
position estimate and the selected navaids. It also
implements manual tuning of the navigation radios and an
option is provided to toggle the radio tuning mode between
manual and automatic.

Both pages use LSK-L5 to request transfer to the Climb,
Cruise, or Descent pages. Which of the three is determined
by external conditions [WPT ACT(TOWPT-1) .PHASE].

On page 1, all other line select keys (LSKs) are non-
functional. On page 2, the operator may transfer the
Lat/Lon or any of the three Navaid identifiers to the
scratch pad. Page 2 updates are done by selecting the
appropriate LSK when there is valid data on the scratch pad.
The "next #2 navaid" cannot be updated by the user.

When either active Navaid is in manual tuning mode, it can
be reset to auto by pressing the DELETE key followed by the
appropriate LSK.

The code is structured so that on any operator inter-
action subroutine ACTION is called to process the input,
after which subroutine PROGRESS terminates. If there is
no input, then the routine computes and refreshes one CDU
line per pass. Which page to update is determined by the
discrete PAGEl, which, in turn, is toggled when the user
presses the NEXT or PREV key on the CDU panel.

There are two "calcuiated goto" structures, one for
each page, followed by a correspondingly labelled code block
for each line on each page. The progress data and their
meanings are outlined below:

-313-

PAGE 1: Label Source or Meaning
Line 2: WPT = WPT_ACT(TOWPT).NAME
DTG = DTOGO converted to nautical miles
ETA = (DTOGO/GSFPS) + TIME
Line 4: ALT = ALTCOR
FPA = GAMMA
XTKE = XTK x FTONM,
"R" if XTK > 0.
Blank if not at least 2D guidance.
Line 6: AE = HER, "LO" if HER > 0.
FPAE = PFPA - GAMMA, "+" if > 0.
TKAE = TKE, "R" if > 0.
Blank if not at least 2D guidance.
Lines 8-10:
RTA = Done through calls to Climb page

(RTA_LN8, RTA LN9, RTA LN10)

NOTE: If no RTA is available, "NO RTA ASSIGNED" appears on
line 8, and lines 9-11 are blank.

PAGE 2: Label Source or Meaning
Line 2: PPOS = LAT, LON
Blank if no valid position estimate.
Line 4: DME 2
ID = NAVADZ2A
FREQ = ATUNE2,
"A" if ATNAV2 AND DMEZ2FQ = ATUNE2
"M" if NOT ATNAVZ2
DME 3
ID = NAVAD3A
FREQ = ATUNE3,
"A" if ATNAV3 AND DME3FQ = ATUNE3
"M" if .NOT. ATNAV3
Line 6: NEXT 2
ID = NAVADZ2B
FREQ = NAVADZ2B + 4
Line 7: NAV SRC = NAVTYP
LINE 12: Both pages:
Prompt = WPT ACT (TOWPT-1) .PHASE

If = 1 then use <CLB
If = 2 " " <CRC
If = 3 " " <DES

But no prompt if not at least
2D guidance.

-314-

GLOBAL REFERENCES:

VARIABLES
ACTCNT ALTCOR ATNAV2 ATNAV3 ATUNEZ ATUNE3 DMEZ2FQ DME3FQ DTOGO

GAMMA GSFPS GUID2D GUID3D HER INAVV LAT LLINIT LON NVADZ2A
NVAD2B NVAD3A PFPA PGINIT* TIME TKE TOWPT XTK

ARRAYS
DASHES ENTRY NAVTYP

RECORD ARRAYS
WPT_ACT

FUNCTIONS AND SUBROUTINES
ACTION FMTDEG FMTOUT FMTTIM FRMFRQ GET CHAR GET_WORD

OTS$CVT_L_TI OTSSFLOAT RTA_LN10 RTA_LN8 RTA_LN9

-315-

Section 7.7 THE PERFORMANCE INITIALIZATION PAGE

The PERFORMANCE/INITIALIZATION page of the CDU is used
to initialize and display various aircraft performance
parameters. This CDU page is accessed by pressing the
"<PERF" prompt on the INIT/REF INDEX page and is exited by
pressing the "<INDEX" prompt or "TAKEOFF>" prompt on the
PERFORMANCE/INITIALIZATION page, or by selecting a different
CDU page from the CDU panel. Refer to figure 7.7 on the
following page.

The aircraft parameters and their associated global
variables that can be modified via this page include:

PARAMETER VARIABLE UNITS
AIRCRAFT GROSS WEIGHT WEIGHT LBS*1000
AIRCRAFT ZERO FUEL WEIGHT ZFW LBS*1000
BARO SETTING BARSET IN
COST INDEX CINDEX -
CRUISE ALTITUDE CRZALT FT
INDICATED AIRSPEED REFERENCE IASREF KTS
OPTIMUM ALTITUDE OPTALT FT

The aircraft filtered total fuel quantity varaible
FTFQ is also displayed on this page, but its value can
not be modified.

The parameters on this page are updated once every 15
SLOW task cycles.

-317-

PERF 171

GROSS WT CRZ ALT
94.2 FL30O
FUEL LT

20. 2
ZFW BARSET

74.0 29.92

COST INDEX U ASREF

<1/R INDEX TAKEOFF >

The Performance Initialization
Page

(figure 7.7)

POECEDIEN FAGE Wi NG FULMED

pagt D/l INTENTIONALLY BLANR

-319-

MODULE NAME: PFINIT
FILE NAME: PFINIT.FOR
PROCESS: SLOW
CALLED BY: CDUEXC

CALLING SEQUENCE: CALL PFINIT

PURPOSE:

The purpose of this CDU module is to display as well
as accept modifications to various aircraft performance
parameters.

DESCRIPTION:

This module is called by the CDU executive CDUEXC when
the user has selected the PERFORMANCE/INITIALIZATION page.
The CDU page managed by this module is accessed by pressing
the "<PERF" prompt on the INIT/REF INDEX page and is exited
by pressing the "<INDEX" prompt or "TAKEOFF>" prompt on the
PERFORMANCE/INITIALIZATION page, or by selecting a different
CDU page from the CDU panel.

If any CDU inputs are made, the PFINIT input processing
routine PFINP is called.

PFINIT is called once per SLOW cycle. One CDU line is
output per PFINIT call. Actual CDU output is handled via
calls to the FMTOUT routine.

GLOBAL REFERENCES:

VARIABLES
BARSET CINDEX CRZALT FLKEY FTFQ GWSET IASREF OPTALT
PGINIT* WEIGHT ZFW

ARRAYS
BOXES DASHES ENTRY*

FUNCTIONS AND SUBROUTINES
CDU_SMALL FMTOUT OTS$CVT_L TI OTSSFLOAT PFINP

PAGE S |2 INTENTIONALLY BLANK PRECEDING PAGE BLANX NOT FILMED

-320-

MODULE NAME: PEFINP

FILE NAME: PFINIT.FOR
PROCESS: SLOW
CALLED BY: PFINIT
CALLING SEQUENCE: CALL PFINP
PURPOSE:

The purpose of this routine is to handle user inputs
made from the CDU PERFORMANCE/INITIALIZATION page.

DESCRIPTION:

This module is called from the PFINIT routine whenever
a user makes an input from the CDU PERFORMANCE/INITIALIZATION
page. There are two basic types of CDU inputs handled by
this module -- 1) Blank Scratch Pad + Line Select Key (LSK),
and 2) Scratch Pad Data + Line Select Key.

If there is no data on the scratch pad when an LSK is
pressed, the following applies:

LSK-L1l: Since data was expected for "GROSS WT", a "NO
DATA" error message will be displayed on the
scratch pad.

LSK-L2: The "FUEL" parameter cannot be modified. A
"DEAD KEY ERROR" message will be displayed on
the scratch pad.

LSK-L3: Since data was expected for "ZFW", a "NO DATA"
error message will be displayed on the scratch
pad.

LSK-L4: No parameter. A "DEAD KEY ERROR" message will be
displayed on the scratch pad.

LSK-L5: Since data was expected for "COST INDEX", a "NO
DATA" error message will be displayed on the
scratch pad.

LSK-L6: The "<INDEX" prompt was pressed and the CDU
INIT/REF INDEX page becomes active.

LSK-R1: "CRZALT" was pressed. If the global Cruise
Altitude variable CRZALT is > 0, the wvalue of
CRZALT is copied to the scratch pad by calling
the PROG_LN routine; otherwise, a "DEAD KEY
ERROR" error message will be displayed on the
scratch pad.

LSK-R2: Although the "OPT ALT" parameter is shown at
this LSK, it is not currently implemented. No
data will be accepted. A "DEAD KEY ERROR" error
message will be displayed on the scratch pad.

LSK-R3:

LSK-R4:

LSK-R5:

LSK-R6:

-321-

Since data was expected for "BARSET", a "NO
DATA" error message will be displayed on the
scratch pad.

No parameter. A "DEAD KEY ERROR" message will be
displayed on the scratch pad.

Since data was expected for "IASREF", a "NO
DATA" error message will be displayed on the
scratch pad.

The "TAKEOFF>" was pressed and the CDU TAKEOFF
page becomes active.

If there is data on the scratch pad prior to pressing
an LSK, the following applies:

LSK-L1:

LSK-L2:

LSK-L3:

A data entry was made for "GROSS WT". The data
should be the aircraft gross weight in thousands
of pounds. For example, if the aircraft is known
to weigh 93100 pounds, the data entry should be
93.1. The zero fuel weight is computed as gross
weight less the filtered total fuel quantity;
however, before setting the actual global
variables GRWGT and ZFW, the FUEL_LIM routine is
called to verify the following:

74000 <= new GRWGT <= 102000
&
65000 <= new ZFW = 77600.

If these tests are passed, GRWGT and ZFW are
appropriately set; otherwise, their values remain
unchanged and a "DATA OUT OF RANGE" message is
displayed on the scratch pad.

The "FUEL" parameter cannot be modified. A
"DEAD KEY ERROR" message will be displayed on
the scratch pad.

A data entry was made for "ZFW", zero fuel
weight. A new gross weight is computed as the
new zero fuel weight plus the filtered total
fuel quantity. The same test required when
entering gross weight (see LSKL1 above) is
performed with similar actions taken on the
results.

-322-

LSK-L4:

LSK-L5:

LSK-L6:

LSK-R1:

LSK-R2:

LSK-R3:

No parameter. A "DEAD KEY ERROR" message will be
displayed on the scratch pad.

The cost index to be used by the PGA-4D
algorithm is entered here. It must be a number
between 0 and 200 inclusively in order for the
global variable CINDEX to be set. If it is not
in this range, a 'DATA OUT OF RANGE’ message is
is displayed on the scratch pad. (note that the
PGA-4D program is currently not implemented)

The "<INDEX" prompt was pressed. REPROG is
called to save the data before switching to the
INIT/REF INDEX CDU page.

CRZALT is entered at this LSK. It can be entered
in a number of formats:

1) 0000 <= data <= 0999 (4 chars);
CRZALT is displayed as a number between 0 and
999,

2) 1000 <= data <= 18000;
CRZALT is displayed as entered.

3) 1 <= data <= 400 (1 to 3 chars);
CRZALT 1is displayed as (data * 100).

4) 18000 <= data <= 40000;
CRZALT is displayed as a flight level.
(e.g. if data = 32000, it will be displayed
as FL320)

If data < 0, data > 400 (3 chars), or

data > 40000, a 'DATA OUT OF RANGE’ message will
be displayed on the scratch pad. In the valid
formats listed above, the CRZALT will be assigned
to all cruise waypoints in the current active
flight plan.

The CRZALT value is determined by calling the
ALTX function. ALTX decodes the input data
using the rules of the formats above.

Although the "OPT ALT" parameter is shown at
this LSK, it is not currently implemented. No
data will be accepted. A "DEAD KEY ERROR" error
message will be displayed on the scratch pad.

The "BARSET" barometric setting is accepted here.
It has a default value of 29.92.

-323-

LSK-R4: No parameter. A "DEAD KEY ERROR" message will be
displayed on the scratch pad.

LSK-R5: The "IASREF" parameter is entered at this LSK.
It has a default value of 130.

LSK-R6: The "TAKEQOFF>" prompt was pressed. REPROG 1is
called to save the prompt data before switching
to the TAKEOFF page.

If the data on the scratch pad is DELETE and the LSK
selected normally accepts data, an "INVALID DELETE" message
is displayed on the scratch pad. Also note that if any
entry cannot be successfully converted from character to
floating point format, a "BAD DATA FORMAT" message will be
output.

GLOBAL REFERENCES:
VARIABLES

BARSET* CINDEX* CRZALT ERCODE* FLKEY* FTFQ GRWGT IASREF*
INDAT PGRQST* ZFW

ARRAYS
ENTRY

FUNCTIONS AND SUBROUTINES
ALTX DEL_IN FUEL_LIM NEWCRZ OTS$CVT_T F PROG_LN REPROG

-324-

MODULE NAME: FUEL LIM

FILE NAME: PFINIT.FOR

PROCESS: SLOW

CALLED BY: PFINP

CALLING SEQUENCE: CALL FUEL_LIM(GW, Z, GRWGT, ZFW, ERCODE)
PURPOSE:

This routine is called by PFINP to make sure that the
aircraft gross weight (GW) and zero fuel weight (Z) inputs
are within specific limits.

DESCRIPTION:
The tests for the GW and Z inputs are:

74000 <= GW <= 102000
&
65000 <= Z <= 77600.
If these tests are passed, the GRWGT and ZFW input
parameters are set to GW and Z respectively. The global
booleans GWSET and GWRESET are also set. If either of the

tests fail, ERCODE is set to reflect that the data is out of
range.

GLOBAL REFERENCES:

VARIABLES
GWRESET* GWSET*

-325-

Section 7.8 THE STATUS PAGE

The STATUS page of the CDU displays the status of
various onboard systems. It is accessed by pressing the
"STATUS>" prompt on the INIT/REF INDEX page. It is exited
by pressing the "<INDEX" prompt on the STATUS page, or by
selecting a different CDU page from the CDU panel.

The status of six of the seven systems being
monitored will be denoted as "OK" when functioning properly,
or "BAD" when a failure has been detected. The seventh
system denotes whether the localizer frequency has been
selected "SEL" or not selected "NOSEL". These statuses
reflect the value of associated global variables called
valids. The systems and their valids are:

SYSTEM VALID
AIR DATA SYSTEM ADVAL
INERTIAL REFERENCE INAVV
CROSS STATION DME DME3VD
PATH STATION DME DME2VD
LOCALIZER FREQUENCY SELECTED LOCFS
LOCALIZER LOCVLD
GLIDESLOPE GSVLD

The STATUS page is for display purposes only. Valids can
not be modified via this page. Refer to figure 7.8 on the
following page.

=327-

STATUS

<I/R INDEX

The Status Page

(figure 7-8)

PRECEDING PAGE BLANK NOT FILMED

e 3 Ao INTENTIONALLY BLANG
’ P ~

-329-

MODULE NAME: STATPG
FILE NAME: STATPG.FOR
PROCESS: SLOW
CALLED BY: CDUEXC

CALLING SEQUENCE: CALL STATPG

PURPOQOSE:
The purpose of this CDU module is to display the status

of various onboard systems.

DESCRIPTION:

This module is called by the CDU executive CDUEXC. The
CDU page it manages is accessed by pressing the "STATUS>"
prompt on the INIT/REF INDEX page. It is exited by pressing
the "<INDEX" prompt on the STATUS page, or by pressing any
valid function key.

When a CDU input has been detected, the STATPG input
processing routine STNDRD INP is called. The "<INDEX" prompt
is the only active line select key.

STATPG is called once per SLOW cycle. One CDU line is
output per STATPG call. Actual CDU output is handled via
calls to the FMTOUT routine.

GLOBAL REFERENCES:

VARIABLES
ADVAL DMEZVD DME3VD GPNAVV GSVLD INAVV LOCFS LOCVLD PGINIT*

ARRAYS
ENTRY

FUNCTIONS AND SUBROUTINES
FMTOUT STNDRD_ INP

PAOY ’ |
3 ey BUANE PRECEDING PAGE B' ANX NOT FiLmMER

-330-

MODULE NAME: STNDRD INP

FILE NAME: STATPG.FOR
PROCESS: SLOW

CALLED BY: STATPG.FOR
CALLING SEQUENCE: CALL STNDRD_ INP
PURPOSE:

The purpose of this module is to process inputs for
CDU pages in which only the "<INDEX" prompt is active. If
any other line select key is pressed, a "DEAD KEY ERROR"
message is output. If data was entered on the scratch pad
prior to selecting "<INDEX", REPROG is called to save the
data before the CDU page request is processed.

VARIABLES
ERCODE* PGRQST*

ARRAYS
ENTRY

FUNCTIONS AND SUBROUTINES
REPROG

-331-

Section 7.9 THE APPROACH REFERENCE PAGE

The APPROACH REFERENCE page of the CDU displays
information useful in TSRV approaches. It is accessed by
pressing the "APPROACH>" prompt on the INIT/REF INDEX page.
It is exited by pressing the "<INDEX" prompt on the APPROACH
REFERENCE page, or by selecting a different CDU page from
the CDU panel. See figure 7.9 on the following page.

The approach reference parameters and their units that
are displayed on this page include:

PARAMETER UNITS
AIRCRAFT GROSS WEIGHT LBS*1000
REF AIRSPEEDS KTS
GO-AROUND EPR -
HEADWIND SPEED KTS

CROSSWIND SPEED KTS
CROSSWIND DIRECTION -
DESTINATION AIRPORT NAME -
DESTINATION RUNWAY NUMBER -

DESTINATION RUNWAY ALTITUDE FT
DESTINATION RUNWAY LENGTH FT
ILS FREQUENCY -
DESTINATION RUNWAY FINAL COURSE DEG

The parameters are updated once every 15 SLOW task
cycles. The APPROACH REFERENCE page is for display purposes
only. Parameters cannot be modified via this page.

-333-

APPROACH REF 1/1

GROSS WT FLAPS VREF
94. 0 15°
25°
GA EPR 30°
1.96 40°
HOwWD 16KT CRSSWD

KWAL RWY 22

8748F T
FINAL CRS

<I/R |INDEX

The Approach Page

(figure 7.9)

PAGE 373 L INTENTIONALLY BLAMK PRECEDING PAGE BLANK NOT FILMED

-335-

MODULE NAME: APPREF
FILE NAME: APPREF .FOR
PROCESS: SLOW
CALLED BY: CDUEXC

CALLING SEQUENCE: CALL APPREF

PURPOSE:
The purpose of this CDU module is to display various
approach reference parameters.

DESCRIPTION:

This module is called by the CDU executive CDUEXC. The
CDU page it manages is accessed by pressing the "APPROACH>"
prompt on the INIT/REF INDEX page. It is exited by pressing
the "<INDEX" prompt on the APPROACH REFERENCE page, or by
hitting any wvalid function key.

Most of the parameters displayed on this page represent
global variables; however, the reference airspeeds must be
computed. This is accomplished by the VREFLU routine which
is called each time APPREF is called. The destination
information (airport name, runway number, altitude, length,
and final course direction) will not be displayed until a
destination runway has been entered into the active path
via the ROUTE page. Also the ILS frequency will only be
displayed if an ILS is available for the selected runway.

When a CDU input has been detected, a standard input
processing routine STNDRD_INP is called. The "<INDEX" prompt
is the only active line select key.

APPREF is called once per SLOW cycle. One CDU line is
output per APPREF call. Actual CDU output is handled via
calls to the FMTOUT routine.

GLOBAL REFERENCES:

VARIABLES
ACTCNT GAEPR HDGTRU PGINIT* WD WEIGHT WS

ARRAYS
AIRPTS ENTRY

FUNCTIONS AND SUBROUTINES

FMTOUT FRMFRQ GET_CHAR GET_REAL GET_WORD OTS$CVT_ L TI
OTSSFLOAT SCOSD STNDRD INP VREFLU

PAGE_ 2 Y INTENTIONALLY BLANK PHECLO MG 9408 s a0 NGT EY MED

-336-

MODULE NAME: VREFLU
FILE NAME: APPREF .FOR
PROCESS: . SLOW
CALLED BY: APPREF

CALLING SEQUENCE: CALL VREFLU(GW, V15, V25, V30, V40)

PURPOSE:
This routine is called to compute VREF reference

airspeeds for TSRV approaches.

DESCRIPTION:

VREF speeds are looked up in a local table and
interpolated according to aircraft gross weight for flap
positions of 15, 25, 30, and 40 degrees.

GLOBAL REFERENCES: none

-337-

Section 7.10 THE TAKEOFF REF PAGE

There are two CDU TAKEOFF REF pages. The first page is
used to enter, compute, and display takeoff reference
parameters. The second page handles the setup and execution
of the Takeoff Performance Monitoring System (TOPMS) . See
figures 7.10 and 7.11.

The first page is accessed by pressing the "TAKEQFF>"
prompt on the PERFORMANCE/INITIALIZATION page or the
"<TAKEQOFF" prompt on the INIT/REF INDEX page and is exited
by pressing its "<I/R INDEX" prompt or by selecting a
different CDU page via the CDU function keys. The second
page, or TOPMS page, is accessed by hitting the "TOPMS>"
prompt on the first takeoff page and is exited by selecting
a different CDU page via the CDU function keys. Also, the
CDU NEXT and PREV keys can be used to toggle between the two

ages.
P The following lists contain the parameters, associated
global variables, and units displayed on the two pages:

TAKEOFF REF PAGE 1 GLOBAL UNITS
OUTSIDE AIR TEMPERATURE TAT DEG C
SELECTED OUTSIDE AIR TEMPERATURE SOAT DEG C
TAKEQOFF FLAPS POSITION TOFLPS DEG
TAKEOFF EPR TOEPR -
AIRCRAFT GROSS WEIGHT WEIGHT LBS*1000
TAKEOFF REFERENCE V-SPEEDS v1l, V2, VR KTS
TAKEOFF REF PAGE 2 GLOBAL UNITS
AIRCRAFT CENTER OF GRAVITY CG -
RUNWAY FRICTION COEFFICIENT MURWY -
TAKEOFF WIND SPEED TOWS KTS
TAKEOFF WIND DIRECTION TOWD DEG
RUNWAY OFFSET TOPOS FT
RUNWAY LENGTH TKFLEN FT

The display of parameters listed above are updated
once every 15 SLOW task cycles.

-339-

TAKEOFF REF 1/2

OAT V]
3 2°F 130 KT
SEL TEMP V R
-=-- 132 KT
FLAPS v 2
S5° 137 KT
TO EPR GROSS WT

<I/R INDEX TOPMS»>

The Takeoff Page
(#1)

(figure 7.10)

PR SO L I T b g LMD
T»MFK"’T‘."E“'\‘{ peop RS R

P07 237 INTENTIONALLY BLANK

~341-

CG

0.190
WIND sP

17kT
RWY OFFSET

<COMPUTE

The Takeoff Page
(#2)

(figure 7,11)

PAGE :-ZL/O INTENTIONALLY BLAMNE PRECEDING PAGE BLANK NOT FILMED

-343-

MODULE NAME: TKOFF
FILE NAME: TKOFF .FOR
PROCESS: SLOW
CALLED BY: CDUEXC

CALLING SEQUENCE: CALL TKOFF

PURPOSE:
This module manages the two CDU TAKEOFF REF pages.

DESCRIPTION:

This module is called by the CDU executive CDUEXC when
the user has selected the TAKEOFF REF page. There are two
TAKEOFF REF pages. This module is responsible for
displaying the takeoff reference and TOPMS parameters on
those two pages, as well as accepting user inputs. When an
input has been detected TKOFF calls TKOFFINP (see
documentation below) which handles input processing.

TKOFF is called once per SLOW cycle. One CDU line is
output per TKOFF call. Actual CDU output is handled via
calls to the FMTOUT routine.

TAKEOFF REF PAGE 1
Various parameters relative to aircraft takeoff are
displayed on this page including:

OAT: The outside air temperature in degrees
Fahrenheit is always displayed and cannot be modified.

SEL TEMP: The user may enter a selected outside air
temperature (SOAT) in degrees Fahrenheit which will be
used in takeoff V-speed and EPR computations in place
of the default, OAT. Whenever a SOAT is entered, a
"DERATED TAKEOFF" message will be displayed on the CDU.

FLAPS: The takoff flaps (TOFLPS) has a default wvalue
of 5 degrees and can be modified.

TO EPR, V1, VR, V2: Takeoff EPR (TOEPR) and V-speeds
are computed by the EPRTO and MANUAL routines.

Aircraft gross weight must be entered on the
PERFORMANCE / INITIALIZATION page before these routines
can be called. The parameters are not computed every
TKOFF call. EPRTO and MANUAL are only called to update
the parameters when:

1) the aircraft gross weight GRWGT has been
entered on the PERFORMANCE INITIALIZATION page,

PA&__-_S__L_{_Z,'NTEN“ONALLY BLANR PP N E G AL et R MGy PUMED

-344-

For
for

2) a SOAT is entered on this page,

3) a SOAT is deleted on this page (in which case
the default OAT is used), or

4) takeoff flaps TOFLPS is entered on this page.

V-speeds can also be manually entered and will
appear in small font. Manually entered V-speeds will
override those computed by MANUAL; however, if one of
the four items above occurs, new V-speeds will be
computed by MANUAL and displayed. Computed V-~speeds
are displayed in large font.

GROSS WT: Aircraft gross weight is displayed, but can
not be modified on this page.

more details on these parameters, see the documentation
the TKOFFINP routine below.

TAKEOFF REF PAGE 2

This page is used to initialize and compute TOPMS

parameters and enable the TOPMS display on the Navigation
Display (ND). The parameters displayed on this page are:

CG: Aircraft Center of Gravity (CG) is a user-defined
parameter.

WIND SP: Takeoff Wind Speed (TOWS) is a user-defined
parameter.

WIND DIR: Takeoff Wind Direction (TOWD) is a user-
defined parameter.

MU: Runway friction coefficient (MURWY) is a user-
defined parameter with a default value of 0.015.

RWY OFFSET: Runway offset (TOPOS) is a user-defined
parameter with default value of 200 feet.

RWY LENGTH: Runway length (TKFLEN) is a user-defined
parameter.

For more details on inputting these parameters and

setting up for a TOPMS run, see the documentation for the
TKOFFINP routine below.

-345-

GLOBAL REFERENCES:

VARIABLES
ABLOFF ABROFF CG COMPFL* DISPST ENAFLG GWRESET* GWSET
HBARO MURWY NAV64K PGINIT* SOAT SOATFL TAT TKFLEN TOEPR

TOFLPS TOINDX TOPFLG TOPOS TOWD TOWS V1 V1FLAG V2 V2FLAG
VR VRFLAG WEIGHT

ARRAYS
AIRPTS BOXES DASHES ENTRY*

FUNCTIONS AND SUBROUTINES

CDU_SMALL EPRTO FMTOUT MANUAL OTS$CVT L TI OTS$FLOAT
TKOFF INP -

-346-

MODULE NAME: TKOFFINP
FILE NAME: TKOFF .FOR
PROCESS: SLOW
CALLED BY: TKOFF

CALLING SEQUENCE: CALL TKOFFINP

PURPOSE:
TKOFFINP handles user inputs for the two CDU TAKEOFF

REF pages.

DESCRIPTION:
This module is called from the TKOFF routine whenever

a user makes an input from one of the CDU TAKEOFF REF
pages.

TAKEOFF REF PAGE 1 INPUTS

When there is no data on the scratch pad, the only
Line Select Keys (LSK) that can be legally pressed are
the "<I/R INDEX" prompt (LSKL6) and "TOPMS>" prompt
(LSKR6) . Hitting any other LSKs will result in a "NO
DATA"™ or "DEAD KEY ERROR" error message.

If there is data (except "DELETE") on the scratch pad
when an LSK is pressed, the following applies:

LSK-L1: The outside air temperature cannot be
modified. A “DEAD KEY ERROR" error message
will be displayed.

LSK-L2: SOAT is entered in degrees Fahrenheit using
this LSK. Its value will be converted and
stored as degrees Centigrade. A "DERATED
TAKEOFF" message will be displayed near the
bottom of the page.

LSK-L3: Takeoff flaps TOFLPS are entered with this LSK.
Only values of 1, 5, and 15 degrees will be
accepted. Inputting any other value results in
the output of an ’'ILLEGAL ASSIGNMENT'’ error
message.

LSK-L4: The takeoff EPR is computed by the EPRTO
routine and cannot be manually modified. A
"DEAD KEY ERROR" error message will be
displayed.

LSK-L5: No parameter. A "DEAD KEY ERROR" error message
will be displayed.

-347-

LSK~L6: REPROG is called to save the data before the
CDU switches to the I/R INDEX page.

LSK-R1l: V1 can be manually entered and will override
the use and display of the V1 computed by the
MANUAL routine. It will be displayed in small
font. Before being accepted, the following
test must be passed:

100kt <= new V1 <= VR.

If the test fails, the value is rejected and
an "ENTRY OUT OF RANGE" error message 1is
displayed.

LSK-R2: VR can be manually entered and will override
the use and display of the VR computed by the
MANUAL routine. It will be displayed in small
font. Before being accepted, the following
test must be passed:

V1 <= new VR <= 161kt.

If the test fails, the value is rejected and
an "ENTRY OUT OF RANGE" error message 1is
displayed.

LSK-R3: V2 can be manually entered and will override
the use and display of the V2 computed by the
MANUAL routine. It will be displayed in small
font. Before being accepted, the following
test must be passed:

VR <= new V2 <= 163kt.

If the test fails, the value is rejected and
an "ENTRY OUT OF RANGE" error message is
displayed.

LSK-R4: The aircraft gross weight cannot be modified
on this page. A "DEAD KEY ERROR" error message
will be displayed.

LSK~-R5: No parameter. A "DEAD KEY ERROR" €rror message
will be displayed.

LSK-R6: This is the "TOPMS>" prompt. Data is not
allowed. A "DEAD KEY ERROR" error message
will be displayed.

-348-

When TKOFFINP detects a deletion (data input 1is

"DELETE") while this page is active, the PROC DEL routine
(see documentation below) is called to handle it. Only
the SOAT and V-speeds can be deleted.

TAKEOFF REF PAGE 2 INPUTS

This page is used to setup and enable a TOPMS run.

The following list contains the details for initializing
the TOPMS parameters:

LSK-L1: Aircraft center of gravity CG is entered at
this LSK. Its value must be greater than 0.0 and
less than or equal to 0.05 to be accepted. If it is
not within this range, the entry will be rejected

and an "ENTRY OUT OF RANGE" message will be displavyed.

LSK-L2: Takeoff wind speed TOWD is entered here. If
the entry is not between 0.0 and 50.0 inclusive, it
will rejected and an "ENTRY OUT OF RANGE" message will
be output.

LSK-L3: Takeoff runway offset TOPOS is entered here.
TOPOS has a default value of 200 feet.

LSK-R1: The runway friction coefficient MURWY has a
range of 0.005 to 0.04. Any entry outside this
range will result in an "ENTRY OUT OF RANGE" message.

LSK-R2: Takeoff wind direction TOWD must be a number
between 0.0 and 360.0 inclusive or an ' ENTRY OUT OF
RANGE’ message will be output.

LSK-R3: The runway length TKFLEN can be entered at
this LSK.

Pressing any of the above LSKs with no data on the

scratch pad will result in a "NO DATA" error message. All
other LSKs on this page are dead keys except for LSKL6 and
LSKR6 which only become active when all the TOPMS parameters
have been properly initialized (see next section).

No deletions are allowed on this page. Attempts at

deleting any parameters will result in the output of an
©"INVALID DELETE" message.

For both pages, note that if any data entry cannot be

successfully converted from character to floating point
format, a "BAD DATA FORMAT" message will appear.

-349-

ENABLING TOPMS

Some preconditions must be met before the TOPMS
computations can be performed. TOWS, TOWD, and CG must be
entered, the aircraft ground speed must be less than 64
knots, and the aircraft gross weight must have been entered
on the PERFORMANCE INITIALIZATION PAGE. In addition, an
origin runway must have been entered on the ROUTE page.

If the runway has not been entered and the other precon-
ditions have been met, an "ENTER ORIGIN RUNWAY" message will
appear on the CDU in reverse video. When the runway has
been entered and the preconditions met, a "<COMPUTE" prompt
will appear at LSKL6.

Pressing the "<COMPUTE" prompt causes the routine
TOSTBP to compute the takeoff stabilizer position TOSTAB.
The takeoff index variable TOINDX will be set to 1 allowing
the TOPMS software in the Displays VAX to run. An “<ENABLE"
prompt will then replace the "<COMPUTE" prompt and a
"REJECT>" prompt will also appear alongside.

Pressing the "<ENABLE" prompt causes it to disappear.
TOINDX will be set to 2, enabling the TOPMS display format
to replace the current format on the ND.

Pressing the "REJECT>" prompt causes TOINDX to be
reset to zero and the "<COMPUTE" prompt to reappear. At
this time, parameters on either TAKEOFF REF pages can be
altered for the next TOPMS computations, if so desired.

After completing a takeoff attempt, CDUFST
reinitializes SOAT and TOINDX. When this is detected by
the TKOFF module, the SOAT and V-speeds on the CDU are
replaced with dashes. At this time, the takeoff parameters
can be appropriately setup for the next takeoff attempt.

GLOBAL REFERENCES:

VARIABLES
CG* COMPFL* DISPST ENAFLG ERCODE* INDAT MURWY* NAV&4K
PGRQST* SOAT* SOATFL* TKFLEN* TOFLPS* TOINDX* TOPFLG TOPOS*
TOSTAB TOWD* TOWS* V1 V1IFLAG* V2* V2FLAG* VR VRFLAG*

ARRAYS
ENTRY

FUNCTIONS AND SUBROUTINES
DEL_IN OTS$CVT_TI_L OTS$CVT T F PROC DEL REPROG TOSTBP

-350-

MODULE NAME: PROC_DEL
FILE NAME: TKOFF .FOR
PROCESS: SLOW
CALLED BY: TKOFFINP

CALLING SEQUENCE: CALL PROC_DEL (LSK)

PURPOSE:
This routine processes "DELETE" data entries.

DESCRIPTION:

This routine is called by TKOFFINP whenever a "DELETE"
is attempted. The action taken is dependent upon the value
of the LSK parameter and the page number. Attempting to
delete a TOPMS parameter on page 2 will result in an
"INVALID DELETE" error message.

On the first TAKEQOFF REF page, deleting the SOAT
parameter will cause TKOFF to call MANUAL to recompute the
V-speeds with the OAT (TAT) as the temperature parameter.
Any user-entered V-speeds will be replaced with the new
computed V-speeds. Deleting the SOAT when one has not been
entered will result in an "INVALID DELETE" error. Deleting a
user—-entered V-speed causes the TKOFF routine to call MANUAL
to recompute the V-speed. The new computed V-speed will be
subsequently used and displayed. Deleting a computed V-speed
will result in an "INVALID DELETE" error. Also, deleting
the SOAT or V-speeds will cause TKOFF to call EPRTO to
recompute the takeoff EPR (TOEPR).

On page 1, it is legal to have "DELETE" on the scratch
pad when switching to the I/R INDEX page via LSKL6. REPROG
will be called to save the data prior to the switch.
Attempts to delete any other paramters on this page will
result in a "DEAD KEY" error.

GLOBAL REFERENCES:

VARIABLES
COMPFL* ERCODE* PGRQST* SOATFL* TOPFLG V1FLAG* V2FLAG*
VRFLAG*

FUNCTIONS AND SUBROUTINES
REPROG

-351-

MODULE NAME: MANUAL

FILE NAME: TKOFF . FOR

PROCESS: SLOW

CALLED BY: TKOFF

CALLING SEQUENCE: CALL MANUAL (PALT, TEMP, FLAPS, W,
V1, VR, V2)

PURPOSE :

The purpose of this routine is to compute the takeoff
V-speeds V1, VR, and V2, given pressure altitude (PALT),
ambient air temperature (TEMP), takeoff flaps position
(FLAPS), and aircraft gross weight (W).

DESCRIPTION:

This routine is called by TKOFF whenever new computed
V-speeds are required. Conditions for calling this routine
are described in the description for the module TKOFF. The
V-speeds are basically derived through the interpolation of
a table look-up, given the values of the input parameters.

GLOBAL REFERENCES:

FUNCTIONS AND SUBROUTINES
INTRP

-352-

MODULE NAME: INTRP

FILE NAME: TKOFF .FOR
PROCESS: SLOW

CALLED BY: MANUAL
CALLING SEQUENCE: INTRP (A, X, Y)
PURPOSE:

This function returns an interpolation of the given
inputs A, X, and Y.

DESCRIPTION:
The intepolation function is:

INTRP = FLOAT(INT(X - A * (X - Y) + 0.5))

GLOBAL REFERENCES: none

-353-

MODULE NAME: EPRTO
FILE NAME: TKOFF .FOR
PROCESS: SLOW
CALLED BY: TKOFF

CALLING SEQUENCE: CALL EPRTO(TEMP, PALT, ABOFF)

PURPOSE:
The purpose of this function is to return a takeoff

EPR value.

DESCRIPTION:

This function is called by TKOFF. The EPR computed by
this function is one recommended by the B-737 flight manual
given the ambient air temperature (TEMP), pressure altitude
(PALT), and airbleed status (ABOFF). It is based on the
tabulation on page 3 (4B-1) of the 737-1LT flight manual
dated January 5, 1970.

-354-

MODULE NAME: TOSTBP
FILE NAME: TKOFF .FOR
PROCESS: SLOW
CALLED BY: TKOFF

CALLING SEQUENCE: CALL TOSTBP (CG, SP)

PURPOSE:
This routine computes the nominal takeoff stabilizer

position.

DESCRIPTION:
This routine is called by TKOFF. The takeoff

stabilizer position is computed according to the aircraft
center of gravity (CG).

GLOBAL REFERENCES: none

-355-

Section 7.11 THE GPSS PAGE

This CDU page provides information about the Global
Positioning Satellite System (GPSS) to the flight crew.
Most of the page consists of status information, however
GPS navigation may be selected or deselected on the page.
See figure 7.12 on the following page.

=-357-

GPSS SELECT

GPSS NAV STATUS OK
6GPSS LAND STATUS BAD

SATELLITES TRACKED S
DIFFERENTI AL MODE OFF

HDOP 2.9 vobopr 10.4

GPS LND OFF»
<I/R INDEX GPS NAV OFF>

The GPSS Page

(figure 7.12)

oA

PAGE gS [g INTENTIONALLY BLAMK PRECEDING PAGE BLANK NOT FILMED

-359-

MODULE NAME: GPSPG
FILE NAME: GPSPG.FOR
PROCESS: SLOW
CALLED BY: SELECT

CALLING SEQUENCE: CALL GPSPG

PURPOSE:
To generate the GPS page of the CDU,.

DESCRIPTION:

This CDU page provides information about the Global
Positioning Satelite System (GPSS) to the flight crew. The
page 1is accessed via the INIT/REF index page. This module
serves as the entry point to the GPS page software. CDU
keyboard entries are handled directly, while output data
generation is accomplished through calls to SHOW_GPS.

Only function entries are valid inputs on the GPS page.
Of the 12 line select keys, only LSK-L6 and LSK-R6é are
enabled. Selection and deselection of GPS navigation is
made through LSK-R6. Return to the INIT/REF index page is
made using LSK-L6.

Updating of the entire GPS display is performed in
eight consecutive calls to GPSPG. The module SHOW GPS is
called with an index indicating the current place In the
update cycle.

GLOBAL REFERENCES:

VARIABLES
ERCODE* GPLND* GPNAV PGINIT* PGRQST*

ARRAYS
ENTRY*

FUNCTIONS AND SUBROUTINES
SHOW_GPS

pPage_3SY INTENTIONALLY BLANK PRECENMMNG PAGE BUANX NOT FILLMED

-360-

MODULE NAME: SHOW_GPS
FILE NAME: GPSPG.FOR
PROCESS: SLOW
CALLED BY: GPSPG

CALLING SEQUENCE: CALL SHOW_GPS (PASS)

PURPOSE:
To display lines of text on the CDU GPSS page.

DESCRIPTION:

This procedure updates one of eight CDU display lines
each time it is called. See figure 7.11.1 for the format
of the GPSS page. The calling parameter contains the index
(0-7) of which line to update. The following chart shows
the data formatted for the various index values.

Title line

GPSS navigation status line (uses GPNAVV)
GPSS land status line (uses GPLNDV)
satellites tracked line (uses SATINVW)
differential mode line (uses DIFMOD)

VDOP and HDOP line (uses GPHDOP and GPVDOP)
GPS land select line (uses GPNAV)

GPS NAV select line (uses GPNAV)

~NobkwNEP O

Note that the wvalues of HDOP and VDOP are dashed out if
GPS navigation is not valid (GPNAVV).

GLOBAL REFERENCES:

VARIABLES
DIFMOD GPHDOP GPLNDV GPNAV GPNAVV GPVDOP SATINVW

FUNCTIONS AND SUBROUTINES
FMTOUT OTS$CVT L TU OTSSFLOAT

Section 8.0

THE PHASE OF FLIGHT PAGES

There are three CDU phase of flight pages:

CRUISE, and DESCENT.

-361-

CLIMB,
Each page is used for displaying

and altering parameters useful in its associated flight

segment. See figures 8.0,
examples of these pages.

Each page has an associated CDU key for access.

8'1’

and 8.2 for typical

Automatic switching from one flight page to another will
occur under the appropriate conditions described in later

sections.

Exiting a page can either be accomplished by

pressing its "<LEGS" page prompt or by selecting a different

CDU page via the CDU panel.

Following are the parameters and if applicable,
and units for the pages:

associated global variable,

CLIMB PAGE

CRUISE ALTITUDE
OPTIMUM ALTITUDE
TARGET SPEED

TARGET MACH
RESTRICTED SPEED
RESTRICTED ALTITUDE
CLIMB EPR

CRUISE PAGE

CRUISE ALTITUDE

OPTIMUM ALTITUDE

TARGET MACH

MAX CRUISE EPR

DIST TO TOP OF DESCENT WPT
ETA TO TOP OF DESCENT WPT

DESCENT PAGE

ACTIVE WAYPOINT NAME
ACTIVE WAYPOINT ALTITUDE
TARGET SPEED OF LAST WPT
TARGET SPEED OF ACTIVE WPT
DISTANCE TO ACTIVE WAYPOINT
END OF DESCENT WPT ALT
AIRCRAFT ALTITUDE

ALTITUDE ERROR

GLOBAL
CRZALT
OPTALT
CLB_SPD
CLB_MACH
REST SPD
REST ALT
MCLEPR

GLOBAL

CRZALT

OPTALT

CRZ MACH

MCREPR

computed locally
computed locally

GLOBAL
WPT_ACT (TOWPT) .NAME
WPT ACT (TOWPT) .ALT
WPT_ ACT (TOWPT-1) . IAS
WPT_ACT (TOWPT) . IAS
DTOGO

WPT_ACT (MODCNT) .ALT
ALTCOR

HER

its

-362-

All three pages will display the following information
when 4D guidance is possible (GUID4D on) and an RTA exists
for a waypoint along the unflown portion of the active path:

PARAMETER GLOBAL UNITS
DISTANCE TO RTA WAYPOINT computed locally NM
RTA WAYPOINT NAME WPT_ACT (RTA_PTR) .NAME --
RTA TIME WPT_ACT (RTA_PTR) .ETA HR:SEC
TIME ERROR TIMERR HR:SEC
GROUND SPEED GS KT
GROUND SPEED ERROR GSE KT

Because the CLIMB, CRUISE, and DESCENT pages contain
numerous instances where I/0 was identical, the code to
handle the I/O was incorporated into one routine, namely
FLT TYPE. In the few instances where I/0 is different
from page to page, the common variable PAGENM is used
by FLT_TYPE to distinguish which page is active and take
the appropriate action.

There are three main routines: CLIMB, CRUISE, and
DESCENT. When called by the CDU executive, each routine
sets PAGENM to a specific value and then calls FLT TYPE.

Thus,

* if the executive calls CLIMB, CLIMB sets PAGENM
to 1 and then calls FLT_TYPE

* if the executive calls CRUISE, CRUISE sets PAGENM
to 2 and then calls FLT TYPE

* if the executive calls DESCENT, DESCENT sets
PAGENM to 3 and then calls FLT TYPE

=363~

ACT RTA CLIMB

CRZ ALT

FL30O
TG6T SPD

270->.730
SPD REST

R/ 10000

14NM T0 RTA WFBBF
1100: 00 6S 200KT
+0: : 00

The Climb Page

(figure 8.0)

-365-

ACT RTA CRUISE 171

14NM To RTA WFBBF
RTA 1100:00 GS 200KT
+ 0. 00

The Cruise Page

(figure 8.1)

BABE S0 ntenTionaLLy BLAN PRECEDING PAGE BLANX NOT FILMED

-367-

ACT RTA DESCENT 1/1

TGT ALT E/D ALT
4000/WFBBB 35 FT
TGT SPD ALT
4000/4000 4000 FT
To WFBBB

l4Nm To RTA WFBBF
1100:00 6S 200KT
+ 0 100

OD0000im

The Descent Page

(figure 8.2)

PRECED'™™ PAGE Rt ANK NOT FU.MED

PACE 3&@ INTENTIONALLY BLANK

-369-

MODULE NAME: CLIMB
FILE NAME: CLIMB.FOR
PROCESS: SLOW
CALLED BY: CDUEXC

CALLING SEQUENCE: CALL CLIMB

PURPOSE:
The CLIMB routine is responsible for setting up and
calling the FLT_TYPE routine which handles all CLIMB I/0.

DESCRIPTION:

The CLIMB routine sets the common active flight page
variable PAGENM to 1 and then calls FLT_TYPE. CLIMB is
called once per SLOW task cycle.

GLOBAL REFERENCES:

VARIABLES
PAGENM~*

FUNCTIONS AND SUBROUTINES
FLT TYPE

PAOE_S(o S INTENTIONALLY BLANK SRECEDING PAGE BLANK NOT FILMED

~370-

MODULE NAME: CRUISE
FILE NAME: CRUISE.FOR
PROCESS: SLOW
CALLED BY: CDUEXC

CALLING SEQUENCE: CALL CRUISE

PURPOSE:
The CRUISE routine is responsible for setting up and

calling the FLT_TYPE routine which handles all CRUISE 1/0.

DESCRIPTION:
The CRUISE routine sets the common active flight page

variable PAGENM to 2 and then calls FLT_TYPE. CRUISE is
called once per SLOW task cycle.

GLOBAL REFERENCES:

VARIABLES
PAGENM*

FUNCTIONS AND SUBROUTINES
FLT TYPE

-371-

MODULE NAME: DESCENT
FILE NAME: DESCENT.FOR
PROCESS: SLOW

CALLED BY: CDUEXC

CALLING SEQUENCE: CALL DESCENT

PURPOSE:
The DESCENT routine is responsible for setting up and
calling the FLT_TYPE routine which handles all DESCENT I/0.

DESCRIPTION:

The DESCENT routine sets the common active flight page
variable PAGENM to 3 and then calls FLT TYPE. DESCENT 1is
called once per SLOW task cycle. -

GLOBAL REFERENCES:

VARIABLES
PAGENM¥*

FUNCTIONS AND SUBROUTINES
FLT TYPE

-372-

MODULE NAME: FLT_TYPE

FILE NAME: CLIMB.FOR

PROCESS: SLOW

CALLED BY: CLIMB, CRUISE, DESCENT

CALLING SEQUENCE: CALL FLT TYPE

PURPOSE:
This routine manages the I/O for the CDU CLIMB, CRUISE,

and DESCENT phase of flight pages.

DESCRIPTION:

FLT TYPE is called by the CLIMB, CRUISE, and DESCENT
CDU routlines to display information relative to the current
phase of flight. Most of the parameters represent global
variables, but a couple are computed locally. Every time
FLT TYPE is called it calls FIND TOD to compute the top of
descent waypoint if a flight plan has been entered (GUID2D
on). It also calls the SPEEDB routine to set the target
speeds and compute the speedbug for the Primary Flight
Display (PFD). The speedbug is also the active speed
command and will be displayed in reverse video. FLT_TYPE
also calls CHNG PG to see if the conditions for an automatic
phase of flight page change exist.

Many of the parameters on these pages allow for user
inputs. When an input is detected, FLT_TYPE calls
FLT_TYPE _INP to handle it.

The title line of each page contains the flight phase,
guidance mode, and plan mode. The flight phases are of
course CLIMB, CRUISE, and DESCENT. If 4D guidance is
active (GUID4D on), then the title will contain "RTA";
otherwise it will contain "ECON". When the current plan
mode is "active" (PMODE > 1), the string "ACT" will also be
displayed. For example, if PMODE = 2, GUID4D is set, and
the CLIMB page is active, the title will read "ACT RTA
CLIMB".

One CDU line is output per FLT TYPE call. Actual CDU
output is handled via calls to the FMTOUT routine.

GLOBAL REFERENCES:

VARIABLES
ALTCOR CRZALT DFLKEY DTOGO FLKEY GSFPS GUID2D GUID4D HER
MCLEPR MCREPR MODCNT OPTALT PAGENM PGINIT* PMODE REST_ ALT
REST_SPD REVERS RFLKEY RTA PTR TGT_MACH TGT_SPD TIME TOWPT

ARRAYS
BOXES DASHES ENTRY*

-373-

RECORD ARRAYS
WPT ACT

FUNCTIONS AND SUBROUTINES

CDU_SMALL CHNG PG FIND TOD FLT TYPE INP FMTOUT FMTTIM

OTSSCVT L TI OTS$FLOAT PROG_LN RTA LN10 RTA_LN8 RTA LN9
SPEEDB

MODULE NAME: FLT TYPE_INP
FILE NAME: CLIMB.FOR
PROCESS: SLOW

CALLED BY: FLT TYPE

CALLING SEQUENCE: CALL FLT_TYPE_ INP
PURPOSE:

This routine handles all user inputs for the CLIMB,
CRUISE, and DESCENT CDU pages.

DESCRIPTION:
FLT TYPE INP is called by FLT TYPE whenever a user

input is detected on the CDU. There are two basic types of
CDU inputs handled by this module -- 1) Blank Scratch Pad +
Line Select Key (LSK), and 2) Scratch Pad Data + Line Select
Key.

If there is no data on the scratch pad when an LSK is
pressed, the following applies:

LSK-L1: If the CLIMB or CRUISE page is active, PROG_LN is
called to program the scratch pad with the value
of the cruise altitude (CRZALT). If the DESCENT
page is active, the ’TO’ waypoint altitude
(WPT_ACT (TOWPT) .ALT) is put on the scratch pad.

LSK-L6: The "<LEGS" prompt was pressed and the LEGS page
becomes the active CDU page.

OTHERS: 1If data was expected for the key, a "NO DATA"
error message will be displayed; otherwise, a
"DEAD KEY ERROR" error message will be output.

If there is data on the scratch pad prior to pressing
an LSK, the following applies:

LSK-L1: Altitudes are entered with this key. For the
CLIMB and CRUISE pages, the altitude is the
cruise altitude (CRZALT). If executed, the value
of CRZALT will be assigned to WPT_ACT() .ALT for
all cruise waypoints in the path through a call
to the NEWCRZ routine. For the DESCENT page,
the entered altitude will be assigned to
WPT_ACT(TOWPT).ALT, WPT_ACT(TOWPT).ALTF will be
set, and DEMODE is called with the AUTOEX
parameter so that an automatic change to the
waypoint buffer will occur. The altitudes can be
entered in a number of different formats:

LSK-L3:

-375-

1) 0000 <= data <= 0999 (4 chars);
Altitude is displayed as a number between 0
and 999.

2) 1000 <= data <= 18000;
Altitude is displayed as entered.

3) 1 <= data <= 400 (1 to 3 chars);
Altitude is displayed as (data * 100).

4) 18000 <= data <= 40000;
Altitude is displayed as a flight level. -
(e.g. if data = 32000, it will be displayed
as FL320)

If data < 0, data > 400 (3 chars), or
data > 40000, a "DATA OUT OF RANGE" message will
be displayed on the scratch pad.

The altitude value is determined by calling the
ALTX function. ALTX decodes the input data
using the format rules above.

This key is used to input the restricted airspeed
and altitude on the CLIMB page. It is a dead key
on the CRUISE and DESCENT pages. Valid entries
can be made as follows:

1) if 150 kts <= data <= 350 kts, assign the
value to REST _SPD. The data in this case
may be followed by a slash "/".

2) if the data is a slash "/" followed by a
number, decode it as an altitude (regular or
flight level format) and assign it to
REST ALT.

3) if the data is a number followed by a slash
"/" and another number, decode and assign to
REST _SPD and REST ALT respectively.

When a restricted speed is being entered and
150 kts <= REST_SPD <= 350 kts is not true,
the inputs will be rejected and a "DATA QUT
OF RANGE" error message will be output. The
same restrictions for entering an altitude
described for LSKL1 apply here.

~376-

LSK-L6: REPROG is called to save the data before the LEGS
page change.

OTHERS: Any other data entry results in a "DEAD KEY
ERROR" error message.

GLOBAL REFERENCES:

VARIABLES
CRZALT DFLKEY* ERCODE* FLKEY* GUID2D INDAT PAGENM PGRQST*

PMODE REST ALT* REST_SPD* RFLKEY* TOWPT

ARRAYS
ENTRY

RECORD ARRAYS
WPT_ACT WPT_MOD*

FUNCTIONS AND SUBROUTINES
ALTX DEL IN DEMODE NEWCRZ OTSSCVT_T_F PROG_LN REPROG

MODULE NAME:
FILE NAME:
PROCESS:
CALLED BY:

CALLING SEQUENCE:

PURPOSE:

-377-

FIND TOD
CLIMB.FOR

SLOW

FLT_TYPE

CALL FIND TOD(TOD INDX)

The purpose of this routine is to find the top of
descent waypoint for the active flight path.

DESCRIPTION:

This routine is called by FLT TYPE every time it is
called. It searches through the active waypoint buffer
WPT _ACT for the first waypoint with a descent phase. The
position prior to this waypoint in the buffer is then
assigned to the top of descent variable TOD INDX.

GLOBAL REFERENCES:

VARIABLES
MODCNT

RECORD ARRAYS
WPT ACT

-378-~

MODULE NAME: CHNG_PG

FILE NAME: CLIMB.FOR

PROCESS: SLOW

CALLED BY: FLT_TYPE

CALLING SEQUENCE: CALL CHNG_PG (CRZALT, TOD__INDX)
PURPOSE:

This routine checks the conditions for automatic
phase of flight page changes.

DESCRIPTION:
CHNG_PG 1is called by FLT_TYPE every pass when the
plan mode is active (PMODE = 3). If a new cruise altitude

has been entered on the CLIMB or CRUISE pages, the
following checks are made:

1) if CLIMB or CRUISE page active and CRZALT <=
ALTCOR - 200 feet, then make an automatic switch to

the DESCENT page.

2) if CLIMB page is active and CRZALT < ALTCOR + 200
feet and CRZALT > ALTCOR - 200 feet, then make an
automatic switch to the CRUISE page.

3) if the CRUISE page is active and CRZALT >=
ALTCOR + 200 feet, then make an automatic switch to
the CLIMB page.

In addition, a page change to the CRUISE page will
occur when the aircraft is within 0.5 nm of the first cruise
waypoint. Likewise, when the aircraft is within 0.5 nm
of reaching the waypoint following the top of descent
waypoint, a switch to the DESCENT page will occur.

GLOBAL REFERENCES:

VARIABLES
ACTCNT ALTCOR CRZALT CRZCHNG* DESCHNG* DTOGO PAGENM
PGRQST* TOWPT

RECORD ARRAYS
WPT_ACT

-379-

MODULE NAME: SPEEDB

FILE NAME: CLIMB.FOR
PROCESS: SLOW

CALLED BY: FLT TYPE
CALLING SEQUENCE: CALL SPEEDB
PURPOSE:

The purpose of this routine is to set the target speed
and mach and then set the speedbug for the Primary Flight

Display (PFD).

DESCRIPTION:

FLT _TYPE calls SPEEDB every pass. If 2D guidance is
not possible, the target speed and mach are set to zero;
otherwise they are set as follows:

1) If the CLIMB page is active, the target speed and
mach are set to the global climb variables CLB_SPD
and CLB_MACH respectively.

2) If the CRUISE page is active, the target speed will
be zero and the target mach will be the global
cruise mach CRZ MACH.

3) If #1 and #2 are not true and the active "TO’ waypoint
speed flag (WPT_ACT(TOWPT) .SPDF) is not zero, the
target speed is set to the IAS of the current
waypoint (WPT_ACT(TOWPT - 1).IAS) and the target
mach is set to the ’TO’ waypoint IAS
(WPT_ACT (TOWPT) . IAS) .

Before the speedbug is set, the commanded airspeed
COMIAS is computed as:

COMIAS = 661.5*SQRT(5.*(((l.+DELTA*(((l.+O.2*M*M)**3.5)
1)) **x(2./7.))-1.))

where DELTA is (1-6.87535E-06*HBARO) **5.2561 and
M is the target mach.

The speed bug and active speed command (displayed in
reverse video on the CDU) are set by the following
conditions:

1) if HBARO < restricted altitude (REST_ALT), then
SPDBUG = resticted airspeed (REST_SPD) and the
active speed command will be REST SPD.

-380-

2)

3)

if HBARO >= REST_ALT and the target airspeed
<= COMIAS, then SPDBUG = target speed and
the active speed command will be the target speed.

if neither #1 or #2 is true, then SPDBUG = COMIAS
and the active speed command will be the target
mach.

GLOBAL REFERENCES:

VARIABLES
CLB MACH CLB SPD CRZ MACH GUID2D HBARO PAGENM REST_ALT

REST SPD REVERS* SPDBUG* TGT_MACH TGT_SPD TOWPT

RECORD ARRAYS
WPT_ACT

FUNCTIONS AND SUBROUTINES
MTHS$SQRT

MODULE NAME: PROG_LN
FILE NAME: CLIMB.FOR
PROCESS: SLOW

CALLED BY: FLT TYPE INP

CALLING SEQUENCE: CALL PROG_LN(VAR, LINE)

PURPOSE:
This routine outputs the string VAR to the CDU line

whose value is LINE.
DESCRIPTION:

The CDU line is programmed starting with the first
non-blank character in VAR through a call to FMTOUT.

GLOBAL REFERENCES;

FUNCTIONS AND SUBROUTINES
FMTOUT OTSSCVT_L TI

-381-

-382-

MODULE NAME: RTA_LN8

FILE NAME: CLIMB.FOR

PROCESS: SLOW

CALLED BY: FLT TYPE, PROGRESS
CALLING SEQUENCE: CALL RTA LN8
PURPOSE:

This routine outputs line #8 of the CLIMB, CRUISE,
and DESCENT pages.

DESCRIPTION:

1f 4D guidance is possible (GUID4D on), RTA LN8
computes and displays the distance in nautical miles to
the RTA waypoint. The RTA waypoint name is also displayed
on this line. If the RTA waypoint has already been passed,
a blank line is output. If 4D guidance is not possible the
line will read "NO RTA ASSIGNED". Actual CDU output is
handled through calls to FMTOUT.

GLOBAL REFERENCES:

VARIABLES
DTOGO GUID4D RTA _PTR TOWPT

RECORD ARRAYS
WPT ACT

FUNCTIONS AND SUBROUTINES
CDU_SMALL FMTOUT OTS$CVT_L_TI

-383-

MODULE NAME: RTA LN9

FILE NAME: CLIMB.FOR

PROCESS: SLOW

CALLED BY: FLT TYPE, PROGRESS

CALLING SEQUENCE: CALL RTA LN9

PURPOSE:
This routine outputs line 9 of the CLIMB, CRUISE,

and DESCENT pages.

DESCRIPTION:

If 4D guidance is possible (GUID4D on), RTA LN9
displays the RTA input time (WPT ACT(RTA PTR) .ETA) and the
aircraft ground speed (GS); otherwise, a blank line is
output. Actual CDU output is handled through calls to
FMTOUT.

GLOBAL REFERENCES:

VARIABLES
GS GUID4D RTA PTR

RECORD ARRAYS
WPT_ACT

FUNCTIONS AND SUBROUTINES
CDU_SMALL FMTOUT FMTTIM OTS$CVT_L_TI

-384-

MODULE NAME: RTA_LN10

FILE NAME: CLIMB.FOR

PROCESS: SLOW

CALLED BY: FLT TYPE, PROGRESS
CALLING SEQUENCE: CALL RTA_LN10
PURPOSE:

This routine outputs line 10 of the CLIMB, CRUISE,
and DESCENT pages.

DESCRIPTION:

If 4D guidance is possible (GUID4D on), RTA LN10
displays the RTA time error (TIMERR) and the aircraft ground
speed error (GSE); otherwise, a blank line is output.

Actual CDU output is handled through calls to FMTOUT.

GLOBAL REFERENCES:

VARIABLES
GSE GUID4D TIMERR

FUNCTIONS AND SUBROUTINES
CDU_SMALL FMTOUT FMTTIM OTS$CVT_L TI

-385-

Section 9.0 THE FIX PAGE

The purpose of the FIX CDU page is to provide bearing
and distance information from an entered fix to the current
aircraft position.

There are two fix pages with identical formats and
functions. They are accessed by pressing the FIX function
key and exited by selecting another CDU page via the CDU
panel.

A fix may be a navaid, waypoint, or airport, as long as
it exists in the aircraft’s navigation database. The
distance (nm) and magnetic bearing (deg) from the fix to the
aircraft are computed, displayed, and continually updated
once a fix has been entered. Up to three radials from each
fix can be entered. The distance from the fix along the
radials to the nearest intercept point on a straight leg of
the unflown active path and the altitude (ft) at that
intercept point are computed once at the time of the radial
entry. The aircraft distance to go (nm) along the path to
the intercept point is also continually updated and
displayed. 1If a radial does not have an intercept point,
these parameters are not computed and only the radial value
is displayed. The frequency of the fix updates is once per
14 SLOW task cycles.

A special radial called an abeam can also be displayed.
This abeam radial is one that intersects a straight leg of
the unflown portion of the active path perpindicularly. If
there are more than one abeam radials, the one with the
shortest distance between the fix and its intercept point
will be the one displayed. If no abeam radials exist for
a given fix, an error message will alert the user. A
reference circle can also be displayed by entering its
radius (nm) on the fix page.

In addition to the CDU display, the Navigation Display
(ND) gives the user a graphical depiction of the fix data.
Fixes, radials, and reference circles will be drawn in
green. Figures 9.0 and 9.1 on the following pages show a
typical CDU Fix page with the corresponding Map display
symbology.

-387-

FIX INFO

F I X RAD/DIST FR

COMBC 184°/ 236NM
RAD/DIST DTG

332

300/ 3NM 4

ABEAM

260/ 2NM
CIRCLE

The Fix Page

(figure 9.0)

MZ 8(2 INTENTIONALLY BUANR PRECEDING PAGE BLANX NGT FULMED

-389-

NCOMBC

Nav Display Fix Example

(figure 9.1)

page 20T INTENTIONALLY Biam PRECEDING PAGE BLANK NOT FiLMED

-391-

MODULE NAME: FIX INFO
FILE NAME: FIX.FOR
PROCESS: SLOW
CALLED BY: CDUEXC

CALLING SEQUENCE: CALL FIX INFO

PURPOSE:
FIX INFO is the main FIX routine.

DESCRIPTION:
When a user has selected the CDU FIX page, the CDU
executive CDUEXC calls FIX_INFO once per SLOW task cycle.
Fix information is represented in a FORTRAN structure
declared in the file FIXCOM.INC. This structure contains:

FIX (PG) .ADDR: AADCOM address of the fix

FIX(PG) .NAME: fix name

FIX(PG) .NAME_LEN: number of chars in fix name

FIX(PG) .TYPE: fix type (nvd=1, wpt=2, apt=3)

FIX(PG) .BRG: mag bearing from fix to aircraft (degq)

FIX(PG) .CIRCLE: fix circle radius size (nm)

FIX(PG) .DIST: distance from fix to aircraft (nm)

FIX(PG) .LAT: fix latitude (degq)

FIX(PG) .LON: fix longitude (deg)

FIX(PG) .MAG: fix magnetic variation (deqg)

FIX(PG) .SET: boolean set when a fix has been entered

FIX(PG) .RAD(I).SET: conveys a radial has been entered

FIX(PG) .RAD(I).INDEX: path segment number containing
intercept point (IP)

FIX(PG) .RAD(I) .VAL: radial value (deg)

FIX(PG).RAD(I).IP_LAT: radial IP latitude (deqg)

FIX(PG) .RAD(I).IP_LON: radial IP longitude (deg)

FIX(PG) .RAD(I).IP_ALT: radial IP programmed alt (ft)

FIX(PG) .RAD(I).IP_DIST: distance from fix to IP (nm)

FIX(PG) .RAD(I).IP_DTG: aircraft distance to go along
path to IP (nm)

where PG is the fix page number (1 or 2) and I is the radial
number (1, 2, 3, or abeam = 4).

If an input has been made and a fix has not yet been
entered on the page, the entry must be either a fix at
LSKL1 or a page change request using the NEXT or PREV CDU
panel keys. FIX INP is called if a fix was entered and
CH_FIX PG is called to handle a page change. Any other
inputs will result in the output of an error message.

proe 3 G0 MTENTIONALLY B ANK PRECEDING PAGE BLANK NOT FILMED

-392-

After any inputs are processed, POS_INFO is called
to compute the distance and magnetic bearing from the
fix(es) to the current aircraft position. Next, if 2D
guidance is possible (GUID2D on), the aircraft distance
to go along the path to all existing radial intercept points
is computed by COMP_IP_DTG. FIX DISP is then called to set
the global variables in the global section DISNAV, needed
for displaying fix information on the ND.

Finally, CDU line outputs are performed. All output
lines are handled in this routine except for radial output
lines which are managed by calls to OUT_RAD. A different
CDU line is output on each FIX INFO call. All actual CDU
output is handled through calls to FMTOUT.

Fixes are erased from the CDU and ND by pressing the
"ERASE>" key or by entering "DELETE" and pressing the fix
name line select key (LSKL1).

GLOBAL REFERENCES:

YVARIABLES
ERCODE* GUID2D LAT LON PG PGINIT*

ARRAYS
BOXES DASHES ENTRY*

RECORD ARRAYS
FIX

FUNCTIONS AND SUBROUTINES
CDU_SMALL CH_FIX PG COMP_IP DTG DEL FIX DEL_IN FIX DISP
FIX INP FMTOUT OTS$CVT_L _TI OTSS$SFLOAT OUT_RAD POS_fNFO

-393-

MODULE NAME: OUT_RAD
FILE NAME: FIX.FOR
PROCESS: SLOW

CALLED BY: FIX INFO

CALLING SEQUENCE: CALL OUT_RAD (LINE, INDEX)

PURPOSE:

This routine is called by the main fix routine
FIX INFO to output the parameters for the four radials
to the CDU.

DESCRIPTION:

If a radial has not been entered, or in the case of the
computed abeam, dashes will be displayed. For entered
radials (1, 2, 3), if there is no intersection of a straight
leg in the path, only the radial value will be displayed.
When these radials intersect a straight leg, the radial
value, distance between the fix and the intercept point,
distance to go along the path from the aircraft’s current
position to the intercept point, and the desired altitude
at the intercept point will be displayed. These parameters
are also displayed for the abeam radial if one has been
previously computed.

The input parameter LINE is the CDU line being
output and the INDEX is the radial index (1-4) . All actual
CDU output is handled through calls to FMTOUT.

GLOBAL REFERENCES:

VARIABLES
PG

ARRAYS
DASHES

RECORD ARRAYS
FIX

FUNCTIONS AND SUBROUTINES
CDU_SMALL FMTOUT OTSS$CVT L TI

-39%4-

MODULE NAME: FIX INP

FILE NAME: FIX.FOR

PROCESS: SLOW

CALLED BY: FIX INFO

CALLING SEQUENCE: CALL FIX_ INP (PASS)
DPURPOSE:

The purpose of this routine is to determine the type
of user input and call the appropriate input processing
routine.

DESCRIPTION:

This routine is called by FIX INFO any time a user
1nput is detected. If an LSK has been pressed and there
is no data on the scratch pad, FUNC_ INP_FIX is called.

If a deletion is attempted by the user (data is "DELETE"),
DEL FIX is called. All other data inputs will be handled
by calling DATA_ INP_FIX.

GLOBAL REFERENCES:

ARRAYS
ENTRY

FUNCTIONS AND SUBROUTINES
DATA_INP_FIX DEL_FIX DEL_IN FUNC_INP_FIX

~-395~

MODULE NAME : FUNC_INP FIX
FILE NAME: FIX.FOR

PROCESS SLOW

CALLED BY: FIX_ INP

CALLING SEQUENCE: CALL FUNC_INP_FIX (PASS)
PURPOSE :

The purpose of this routine is to process LSK inputs
in which no data is involved.

DESCRIPTION:
When an LSK has been pressed and there is no data on
the scratch pad, the following applies:

LSK-L1:

LSK-L2,
LSK-L3,
LSK-L4:

LSK-L5:

LSK-L6:

LSK-R6:

If a fix name has been previously entered, it will
be written to the scratch pad; otherwise, a "NO
DATA" error message will be output.

If a fix radial exists at the LSK and an intercept
point was found, the latitude and longitude of the
intercept point will be written to the scratch pad.
If the fix radial does not have an intercept point,
a "NO DATA" message is displayed. If a radial has
not yet been entered, a "DEAD KEY ERROR" message
is output.

If 2D guidance is available (GUID2D on), then
COMP_ABRAD is called to find the abeam radial.

If there is no abeam radial, the message "NO ABEAM
RADIAL" will be displayed. If 2D guidance is not
available, the "DEAD KEY ERROR" message is output.

Circle data is expected. "NO DATA" will be
displayed if a fix has been previously entered and
"DEAD KEY ERROR" will be output otherwise.

The fix is erased from the CDU and the ND. FIX INIT
is called to reset the fix data structure.

Pressing any of the remaining LSKs will result in a "DEAD
KEY ERROR" message.

-396-

GLOBAL REFERENCES:

VARIABLES
ERCODE* GUID2D PG

ARRAYS
ENTRY

RECORD ARRAYS
FIX

FUNCTIONS AND SUBROUTINES
CH FIX PG COMP_ABRAD FIX INIT FMTDEG FMTOUT STRIPR

-397-

MODULE NAME: DATA_INP FIX
FILE NAME: FIX.FOR
PROCESS: SLOW

CALLED BY: FIX INP

CALLING SEQUENCE: CALL DATA_ INP FIX

PURPOSE:
This routine handles fix data inputs.

DESCRIPTION:

DATA_INP_FIX is called by FIX INP whenever an attempt
to input data via the LSKs is made. The following list
explains what is expected for each LSK.

LSK-L1: Input should be a fix name. If the number of
characters is not 3, 4, or 5, a "BAD DATA FORMAT"
message 1is output. LUNAVA is called to look up
the fix in AADCOM. If found, the .MAG, .ADDR,
.NAME, .LAT, and .LON fields of the FIX structure
are retrieved from AADCOM. The .TYPE is set
according to the fix type (airport, navaid, or
waypoint). The -NAME_LEN field is set to the number
of input characters and the .SET field is set. 1If
the fix is not found in AADCOM, a "NOT FOUND IN
MEMORY" error message is output.

LSK-L2, Radials are entered at these LSKs. If 2D guidance

LSK-L3, 1is possible and the entry is a number between 0.0

LSK-L4: and 360.0 , COMP_RAD is called to find the intercept
point and compute all associated radial information.

LSK-L5: Data is not allowed for the abeam LSK. "“INVALID
DATA ENTRY" will be output.

LSK-L6: A circle whose radius must be between 1 and 99.9
can be entered at this LSK. The .CIRCLE field of
the fix data structure is set to the input value.
If the entry does not fall in this range, a "DATA
OUT OF RANGE" message is output.

LSK-R6: Data is not allowed for the "ERASE>" LSK. "INVALID
DATA ENTRY" will be output.

All other keys are dead keys. Also, if a fix has not yet
been entered, all keys except for LSKL1 will be dead keys.
Also note that if any numerical entry cannot be successfully
converted from character to floating point format, a "BAD
DATA FORMAT" message will be output.

-398-

GLOBAL REFERENCES:

VARIABLES
ERCODE* FNAME GUID2D INDAT PG

ARRAYS
ENTRY*

RECORD ARRAYS
FIX*

FUNCTIONS AND SUBROUTINES
COMP_RAD GET_LONG GET_REAL LUARP LUGRP LUNAVA OTSSCVT T F

-399-

MODULE NAME: DEL FIX

FILE NAME: FIX.FOR

PROCESS: SLOW

CALLED BY: FIX INFO, FIX INP
CALLING SEQUENCE: CALL DEL FIX
PURPOSE:

This routine handles "DELETE" fix inputs.

DESCRIPTION:

FIX INP and FIX INFO call DEL _FIX when a user has
entered "DELETE" as data. The following applies for this
type input:

LSK-L1: The fix page is reinitialized. The associated fix
information drawn on the ND will also be erased.
FIX INIT is called to reset the fix data structure.
The CDU will be ready for a new fix to be entered.

LSK-L2, The radial and its associated information is
LSK-L3, romoved from the CDU and ND and the appropriate
LSK~-L4: radial fields of the fix data structure are reset.

LSK-L5: The fix circle is removed from the CDU and ND and
the .CIRCLE field of the fix data structure is set
to zero.

Attempting to delete one of these parameters when it does
not exist results in an "INVALID DELETE" error message. Any
other deletion attempt results in a "DEAD KEY ERROR" error.
GLOBAL REFERENCES:

VARIABLES
ERCODE* PG

ARRAYS
ENTRY

RECORD ARRAYS
FIX

FUNCTIONS AND SUBROUTINES
FIX INIT

-400-

MODULE NAME: CH_FIX PG
FILE NAME: FIX.FOR
PROCESS: SLOW
CALLED BY: FIX INFO

CALLING SEQUENCE: CALL CH_FIX_ PG (PG)

PURPOSE:
This routine handles page changes between the two fix

pages.

DESCRIPTION:

When the user has pressed the PREV or NEXT CDU panel
buttons, FIX INFO calls CH FIX PG to set the current page
variable PG so that the inactive fix page becomes active.

GLOBAL REFERENCES:

FUNCTIONS AND SUBROUTINES
FMTOUT

-401-

MODULE NAME: FIX INIT

FILE NAME: FIX.FOR

PROCESS: SLOW

CALLED BY: FUNC_INP_FIX, DEL FIX

CALLING SEQUENCE: CALL FIX INIT

PURPOSE:
This routine reinitializes those variables necessary
to erase a fix page.

DESCRIPTION:

When a user wishes to erase a fix from the CDU and the
ND, FUNC_INP_FIX and DEL_FIX calls FIX INIT to reset
the fields of the fix structure so that the fix will no
longer be displayed.

GLOBAL REFERENCES:

VARIABLES
PG

RECORD ARRAYS
FIX*

-402-

MODULE NAME: COMP_ABRAD
FILE NAME: FIX.FOR
PROCESS : SLOW

CALLED BY: FUNC_INP_FIX

CALLING SEQUENCE:

PURPOSE:
This routine attempts to find the shortest abeam radial
tetween a fix and a straight leg segment of the active path.

DESCRIPTION:

When a user presses the "abeam" line select key (LSKLS)
for a given fix, FUNC_INP_FIX calls this routine to search
the remainder of the active path for a straight leg segment
in which a radial drawn from the fix to the segment
intersects perpendicularly.

FIND LEG_AB is called for each straight leg segment to
perform the actual computations that determine whether the
segment contains an abeam radial. If the aircraft’s position
is currently on a straight leg and the cross track error XTK
is less than 200 feet, the unflown portion of that segment
is also considered. A segment is considered to be a
straight leg if either of its waypoint DMA fields are zero
(i.e. WPT_ACT(J).DMA = 0 or WPT_ACT(J+1).DMA = O, where J+1
is the ’'TO’ waypoint of the segment). Once all of the abeams
have been found, FMIN is called to determine which abeam
has the shortest distance between the fix and the intercept
point. It is this abeam that will be displayed on the CDU
and ND. Before exiting COMP_ABRAD calls AB IP_LL to
compute the intercept point latitude and longitude and
COMP_IP DTG to compute the distance to go along the path
to the Intercept point. If this distance is greater than
zero meaning the intercept point has not been already
passed, the desired altitude at the intercept point is
also computed.

If no abeams exist, the error message "NO ABEAM
RADIAL" will be output to the CDU.

GLOBAL REFERENCES:

VARIABLES
ACTCNT DTOGO ERCODE* LAT LON PG TOWPT XTK

RECORD ARRAYS
FIX* WPT ACT

FUNCTIONS AND SUBROUTINES
AB IP LL COMP_IP DTG FIND LEG_AB FMIN MTHSTAND POS_INFO
UNITVEC

-403-

MODULE NAME : FIND LEG AB

FILE NAME: FIX.FOR

PROCESS : SLOW

CALLED BY: COMP_ABRAD, COMP_RAD

CALLING SEQUENCE: CALL FIND_LEG_AB(FR VEC, VEC, FLAT,
FLON, FRLAT, FRLON,
PTR, DIST)

PURPOSE:

The purpose of this routine is to find out if an
abeam radial exists for a given straight leg path segment.

DESCRIPTION:

FIND LEG_AB calls COMP_ANG to compute two angles whose
values tell whether or not a segment contains an abeam
radial for a fix. The first angle is the one which
contains the leg’s FROM and TO waypoints and the fix
location. The vertex of this angle is the TO waypoint
location. The second angle contains the same points except
that the vertex is the FROM waypoint. If these two angles
are both acute angles, an abeam radial must exist for the
leg. 1If an abeam is found, the distance between the fix and
the intercept point is computed. This distance must be
greater than 100 feet or the abeam will be rejected.

GLOBAL REFERENCES:

RECORD ARRAYS
WPT ACT

FUNCTIONS AND SUBROUTINES
COMP_ANG FIX ERAD MTH$ATAN2 VDP

-404-

MODULE NAME: UNITVEC

FILE NAME: FIX.FOR

PROCESS: SLOW

CALLED BY: COMP_ABRAD, COMP_RAD

CALLING SEQUENCE: CALL UNITVEC (ULAT, ULON, UVEC)
PURPOSE:

This routine computes a unit vector (UVEC) from the
earth’s center to a position given by its latitude (ULAT)
and longitude (ULON)

DESCRIPTION:

This routine is called when a unit vector from the
earth’s center to the given latitude and longitude is needed
in COMP_ABRAD and COMP_RAD computations.

GLOBAL REFERENCES:

FUNCTIONS AND SUBROUTINES
MTH$COSD MTHS$SSIND

MODULE NAME:
FILE NAME:
PROCESS:
CALLED BY:

CALLING SEQUENCE:

PURPOSE:

-405-

FMIN
FIX.FOR

SLOW

COMP_ABRAD, COMP_RAD
CALL FMIN (X, CNT)

This routine searches the array X for a minimum value
greater than zero and returns its position CNT in the array.

DESCRIPTION:

A simple loop is used to find the minimum value greater
than zero in the array. If all elements are less than zero,
CNT is returned as zero.

GLOBAL REFERENCES:

none

-406-

MODULE NAME: FIX ERAD

FILE NAME: FIX.FOR

PROCESS: SLOW

CALLED BY: FIND LEG AB, COMP_RAD

CALLING SEQUENCE: CALL FIX ERAD(ALT1, RAD1l, LATFT, LONFT)

PURPOSE:
This routine computes the earth radius for a given

position.

DESCRIPTION:

East/west and north/south values are computed for a
given position and are then used to compute a local "feet
per degree" value for latitude and longitude at that
position.

GLOBAL REFERENCES:

VARIABLES
LAT

FUNCTIONS AND SUBROUTINES
MTHS$COSD MTHS$SIND

-407-

MODULE NAME : AB IP LL
FILE NAME: FIX.FOR

PROCESS: SLOW

CALLED BY: COMP_ABRAD, COMP_RAD

CALLING SEQUENCE: CALL AB_IP_LL(VECT, PTR, TMP_LAT, TMP_LON)
PURPOSE :

The purpose of this routine is to compute the latitude
and longitude of an intercept point between an abeam radial
and a given path segment.

DESCRIPTION:

Given the abeam input vector (VECT) and the normal
vector WPT ACT(PTR) .NMV, the intercept point latitude
(TMP_LAT) and longitude (TMP LON) are computed using
vector algebra.

GLOBAL REFERENCES:

RECORD ARRAYS
WPT_ACT

FUNCTIONS AND SUBROQUTINES
MTH$SASIND MTH$COSD VDP

-408-

MODULE NAME: COMP_RAD

FILE NAME: FIX.FOR

PROCESS: SLOW

CALLED BY: DATA INP FIX

CALLING SEQUENCE: CALL COMP_RAD (VAL, INDEX)
PURPOSE:

This routine is called to find an intercept point
between a radial and a straight leg segment of the unflown
portion of the active path.

DESCRIPTION:

A user is able to enter up to 3 radials (other than
the abeam radial) per fix. These radials have values
between 0.0 and 360.0 degrees. Each time a radial is
entered, this routine is called by DATA INP FIX to see if
the radial intersects a straight leg segment of the unflown
active path. Passed as inputs are the radial value in
degrees (VAL) and the radial index (1, 2, or 3) INDEX.

If the current path leg is a straight segment, COMP RAD
first checks to see if there is an intercept point between
the aircraft’s current position and the ’TO’ waypoint.

FIND LEG RAD is called to actually do the computations
needed to determine if the correct geometry for intersection
exists. The remaining straight legs are then searched.

Once all intercept points have been found, FMIN is called to
determine which radial has the shortest distance from the
fix to the intercept point. This distance, however, must

be greater than 100 feet or it will not be considered.

If no intercept points were found, only the radial
value will be displayed on the CDU. The radial will still
be drawn on the ND.

If a minimal distance intercepting radial
is found, the intercept point latitude, longitude, and
altitude are computed. Also, COMP_IP DTG is called to
compute the aircraft’s distance to go along the path to the
intercept point. Displayed on the CDU radial line is the
radial value, distance in nautical miles from the fix to
the intercept point, aircraft distance to go in nautical
miles to the intercept point, and the aircraft’s desired
altitude in feet at the intercept point.

GLOBAL REFERENCES:

VARIABLES
ACTCNT DTOGO LAT LON PG TOWPT XTK

RECORD ARRAYS
FIX* WPT_ACT

FUNCTIONS AND SUBROUTINES
AB IP LL COMP IP DTG FIND LEG AB FIND LEG_RAD FIX ERAD
FMIN MTHS$COSD MTHS$SIND MTHSTAND UNITVEC

-409-

MODULE NAME: FIND LEG_RAD
FILE NAME: FIX.FOR
PROCESS: SLOW

CALLED BY: COMP_RAD

CALLING SEQUENCE: CALL FIND_LEG_RAD (FRLAT, FRLON, FLAT,
FLON, TOLAT, TOLON,
PTOPD, VAL, PTR, DIST)

PURPOSE:
The purpose of this routine is to find an intercept
point between a fix radial and a straight leg segment.

DESCRIPTION:

Given input latitudes and longitudes for the ’T0O’ and
"FROM’ waypoints of the path segment and the fix, FIND LEG RAD
is able to determine whether or not an intercept point~ —
exists. It does this by computing two bearings: one from
the fix to the FROM waypoint of the segment and the other
from the fix to the ’'TO’ waypoint. If the radial value lies
between these two bearings, an intercept point must exist
and the distance between the fix and the intercept point
will be computed.

GLOBAL REFERENCES:

VARIABLES
PG

RECORD ARRAYS
FIX

FUNCTIONS AND SUBROUTINES
COMP_ANG F_ANG GRID MTHS$ATAND2 MTHS$COSD MTHS$SIND MTHS$SQRT

-410-

MODULE NAME: F_ANG(X, Y, ANG)
FILE NAME: FIX.FOR

PROCESS : SLOW

CALLED BY: FIND LEG_RAD

CALLING SEQUENCE:

PURPOSE:
This routine is called to find the angle between two
given bearings that share a common vertex.

DESCRIPTION:

The bearing inputs X and Y have values between -180.0
and 180.0 degrees. The angle between the bearings will be
returned in ANG as a value between 0.0 and 360.0 degrees.

-411-

MODULE NAME: COMP_ANG

FILE NAME: FIX.FOR

PROCESS: SLOW

CALLED BY: FIND LEG AB, FIND LEG RAD

CALLING SEQUENCE: CALL COMP_ANG(LT1, LNI, LT2, LN2, LT3,
LN3, ANG)

PURPOSE:

This routine computes the angle between a vertex
point and two other points.

DESCRIPTION:

The latitudes and longitudes of three points are passed
in as parameters. The second lat/lon pair is the vertex.
The computation is a matter of simple geometry. The angle
is stored in ANG and will have value between 0.0 and 360.0
degrees.

GLOBAL REFERENCES:

FUNCTIONS AND SUBROUTINES
GRID MTHS$SATAND2

-412-

MODULE NAME: POS_INFO

FILE NAME: FIX.FOR

PROCESS: SLOW

CALLED BY: FIX_ INFO, COMP_ABRAD

CALLING SEQUENCE: CALL FIX INFO(LT1, LN1, LT2, LN2, DIST,
BRG)

PURPOSE:

The purpose of this routine is to compute the magnetic
bearing (degrees) and distance (feet) between two points.

DESCRIPTION:

POS _INFO is called whenever bearing and distance are
needed between two points. It uses the latitudes and
longitudes of the two points to perform the computations.
The bearing will be returned as a value between 0.0 and
360.0 degrees.

GLOBAL REFERENCES:

VARIABLES
PG

RECORD ARRAYS
FIX

FUNCTIONS AND SUBROUTINES
GRID MTHSATAND2 MTHS$SQRT

-413-

MODULE NAME: COMP_IP_ DTG

FILE NAME: FIX.FOR

PROCESS: SLOW

CALLED BY: FIX INFO, COMP ABRAD, COMP RAD

CALLING SEQUENCE: CALL COMP_IP DTG (PG, INDEX, DTGO)

PURPOSE:

This routine is called to compute the distance along
the path from the aircraft’s current position to a radial’s
intercept point on the path.

DESCRIPTION:

COMP_1IP DTG is called every time FIX INFO is called
to compute the distance to the intercept point for the
active fix (PG) and the given radial index (INDEX). It
sums 1) the distance from the current position to the r o’
waypoint, 2) the distances of the path legs up to the
waypoint just before the intercept point, and 3) the
distance from that waypoint to the intercept point. 1If
the intercept point has already been passed, there is
no computation to perform and only the radial value will
be displayed. 1In this case DTGO is passed back as zero.

COMP_ABRAD and COMP_RAD also call this routine. 1If
the distance returned is zero, these routines do not
attempt to compute the desired aircraft altitude at the
intercept point.

GLOBAL REFERENCES:

VARIABLES
DTOGO LAT LON TOWPT

RECORD ARRAYS
FIX* WPT ACT

FUNCTIONS AND SUBROUTINES
GRID MTHS$SQRT

-414-

MODULE NAME: FIX DISP
FILE NAME: FIX.FOR
PROCESS: SLOW

CALLED BY: FIX INFO

CALLING SEQUENCE: CALL FIX DISP

PURPOSE:
This routine sets the parameters used by the displays
computer to display fix information on the Navigation

Display.

DESCRIPTION:

FIX INFO calls this routine every time the executive
calls FIX INFO. The global integer array FIXWRD(2) has bit
patterns that are set by FIX DISP. FIXWRD is used by the
displays computer to graphically represent the fix(es) and
radials. FIXWRD(1l) is used for the first fix and FIXWRD(2)
is used for the second page. The bit patterns for each
word are:

bit 0: set if a fix has been entered

bit 1: set if first radial has been entered
bit 2: set if second radial has been entered
bit 3: set if third radial has been entered
bit 4: set if abeam has been computed

bit 12: set if fix is a navaid

bit 13: set if fix is a waypoint

bit 14: set if fix is an airport

1f the conditions for setting a bit do not exist it remains
cleared. Also set for use in the displays computer and ND
are the following global variables:

FIXADD: address of fix in AADCOM

FIXCIR: fix circle radius

FIXRAD(1 - 4): radial wvalues
GLOBAL REFERENCES:

VARIABLES
FIXADD* FIXCIR* FIXRAD* FIXWRD*

RECORD ARRAYS
FIX

Appendix A PATH DEFINITION COMPUTATIONS

*%x THE WAYPOINT UNIT UECTOR ***

The unit vector from the Earth center pointing to a global
position (latitude & longitude) is defined in the guidance vector
coordinate system as shown below.

p = [SIN(LAT), -COS(LAT) SIN(LON), COS(LAT) COS(LON)]

The elements of this vector are stored in the waypoint buffer
structure element labeled WPT_MOD(i).UPU. The figure below
describes the coordinate system involved in the guidance vector

computat ions,

%X (North Pole)

Greenwich
Heridian

Equator

. Longitude measured in degrees east of the Greenwich meridian
. Latitude measured in degrees north of the equator

-415-

~416-

k THE NORMAL UNIT UECTOR **x*
The normal unit vector is calculated as follows.

—_— -~ ~ A — —
NHCi) = WPCi-1) x WPCi); NNCi) = NMCi) / INMCi)|

The elements of these uvectors are stored in the waypoint buffer
element labeled UPT_HMOD(1).NHU. The figure below depicts the
relat ionship between the normal unit vector and its associated
waypoint unlt vector pair,

MBCi) QBCist)

~
NICi+1)

*xx TURN ANGLE (TR) BETWUEEN WAYPOINTS **x

The normal unit vector and the waypoint unit vectors are used
to compute the track angle change between waypoints by using the
following equations,

SIN_TA = -Rit (i) x fRCi+1) . OPCD)
oy P

COS_TR = RACi) . fN(i+1)

TA = ARCTAN2(SIN_TA, COS_TA):

The turn angle at each waypoint, except the first and last on the
flight plan or DHA turn waypoints, is stored in the waypoint
structure under the labe! WPT_HOD(i).TA.

*x% RADIUS OF TURN *x*

The following list shows the three ways the turn radius at a
waypoint may be defined. They are listed in the order of highest
priority.

. Assigned directiy from the COU.

. Default from system database when waypoint is part of a defined
route function.

. Uhen a ground speed is defined at the waypoint, the equation
R =GS ** 2 / (6 * TAN_15_DEG).

. When the waypoint altitude is assigned, and greater than 15000
feet, the radius is set to S0000 feet.

. Radius is set to 15000 feet.

-417-

*kx TURN RRC LENGTH **x*

The arc length calculation is performed for all waypoints except
DMA arc waypoints. The value computed and stored is actually one
half the turn arc length because of the way it is used by other soft-
ware. The following formula is used in the calculation.

HALF_ARC = TURN_RAD * TURN_ANG_RADIANS / 2

The computed value is stored in the waypoint buffer element
UPT_HMOD(i).ARC2.
., Haypoint

”

Tangent

Distance .~~~
’f

Tangent __ """

Point

<

*xkk THE DISTANCE TO THE TANGENT POINT (DTT) %%
The distance between a waypoint and either tangent point is
computed as follows.

DTT = TURN_ANG [SIN(TA) / (1 + COS(TA))]

Note that SIN(TA) / (1 + COS(TA)) is identical to TAN(TA / 2).
The first form is used because the sine and cosine both already
exist from the turn angle calculation. The tangent distance is
stored in the waypoint buffer element WPT_MOD(i).DTT.

*k% THE TURN CENTER UECTOR (TCU) *%x

The first step in finding the turn center vector is to compute
the waypoint to tangent point vector (TNGT). This vector is approximated
by the following equation.

— o Fay :
TNGT = DTT [WP x N Approx ;
angent

The figure to the right depicts the Haypo fnt gy 7 Point
nature of the approximation. HNote that \ /

the difference shown is highly exaggerated to \ !
emphasize the point. In real conditions the \ !

arc distance to the tangent point is extremely \

small compared to the earth's radius. \

-418-

Next the vector fom the earth's center to the tangent point (TP) |[s
conputed as follouws.

-— - -
TP = EARTH_RAD WP + TNGT

The turn center vector calculations proceed as shown below. HNote
that the "+/-" shown means add in a left turn and subract in a
right turn.

TCU = TP +/- (TURN_RAD NM); TCU = TCU / |TCV|
The turn center vector Is saved as WPT_HOD(i).TCY

*x% THE DISTANCE BETUEEN WAYPOINTS (PPD) **x
The distance between waypoints, "point to point” distance, |s
found by computing the angle (radians) between successive waypoint

vectors. The equations are shown below. The computed value is saved
as WPT_HOD(1).PPD

o S
SIN_® = [UP(i-1) x WP(i)l N

Haypoint f’—_.—-_-\7uagpoint
PPD = EARTH_RAD RRCSIN(SIN_¥) ' ‘

-
-
- x
"
L

x% CENTER OF TURN LEG DISTANCE (CCD) *

The along path distance between waypoints, turn center to turn
center, is computed from the point to point distance by adjusting
each end of the point to point line. The adjustment s performed
as follows.

cco(i) = PPD(i) - DTT(i) + ARC(i) - DTT(i-1) + RRC(i-1)

Note that no adjustment is performed for leg ends having a DHA
turn waypoint since no DTT or ARC distances are defined. The
resulting path distance is saved as WPT_MOD(i).CCD.

- PPD .

Haypoint

Haypoint

Turn Center Turn Center

%% THE FLIGHT PATH ANGLE (FPR) ***

The flight path gradient between successive waypoints is
approximated from the along path distance between waypoints and
the change in assigned altitudes. The computed value is actually
the tangent of the flight path angle, however it will approximate
the desired number for the small flight path angles typically on
the flight plan.

FPA_RADIANS = (ALT(i) - ALT(i-1)) / CCDC(i)
The value is converted to degrees and stored in UPT_MOD(i).FPA.

*¥x THE PATH LEG TIHE ***
The time required to fly a leg of the flight plan is computed
when ground speeds (GS) are defined for both leg end waypoints.

TIMECi) = 2 CCDCi) / (6S(i) + GS(i-1))

Note that the ground speeds must be converted to feet per second
before use (stored as knots) since the path distance (CCD) is
defined in feet. The resulting value of leg time is saved in
WPT_MOD(i).TINE.

**x OMA ARC COMPUTATIONS **x*
The DMR arc reference waypoint position, projection bearing and
turn angle are predefined In the navigation database. The
position of the projected waypoint and along path distance are
computed as fol lows,

LAT = LAT_REF + TURN_RAD COS(BRNG) / DLATFT
LON = LON_REF + TURN_RAD SIN(BRNG) / DLONFT
CCD = TURN_ANGLE_RADIANS TURN_RAD

Note thaot DLATFT and DLONFT are the number of degrees per foot in
latitude and longitude respectively, defined for the locality of
the current turn center.

Projected
Inbound Qutbound
Haypoint . A\ MHaypoint
R Turn ot
<~ Angle ,*
~ ’
Bear iN}’
g
Reference

Haypoint

-419-

Form Approved
REPORT DOCUMENTATION PAGE OMB No. 07040138

Public reporting burden tor this collection of information s estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
coliection of information, including suggestions for reducing this burden. to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4307, and 10 the Office of Management and Budget, Paperwork Reduction Project (0/04-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
January 1992 Contractor Report

4_VITLE AND SUBTITLE pdyanced Transport Operating System S. FUNDING NUMBERS
kATOPQ Control Display Unit Software Description C NAS1-19038
WU 505-64-13-11

6. AUTHOR(S)] .
Christopher J. Slominski William J. Heaphy

Mark A. Parks
Kelly R. Debure

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION |
Computer Sciences Corporation REPORT NUMBER

3217 N. Armistead Avenue
Hampton, Virginia 23666-1379

3. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES) 70. SPONSORING / MONTTORING
National Aeronautics and Space Administration AGENCY REPORT NUMBER

Langley Research Center NASA CR-189606
Hampton, Virginia 23665-5225

11. SUPPLEMENTARY NOTES
Langley Technical Monitor: Dr. James R. Schiess (COTR)
Robert A. Kudlinski

12a. DISTRIBUTION/ AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Unclassified - Unlimited

Subject Category 06

1‘3. ABSTRACT (Maximum 200 words)] .
his document describes the software created for the Lear-Siegler Control Display

Units (CDUs) used for the Advanced Transport Operating Systems (ATOPS) project on
the Transport Systems Research Vehicle (TSRV). The software delivery of April
1991, known as the "baseline system", is the one described in this document.
Throughout this publication, module descriptions are presented in a standardized
format which contains module purpose, calling sequence, detailed description and
global references. The global reference section includes subroutines, functions
and common variables referenced by a particular module.

The system described supports the Research Flight Deck (RFD) of the TSRV. The RFD
contains two Lear-Siegler CDUs, one for the pilot and copilot, which are used for
flight management purposes. Operations performed with the CDU affects the aircraft's
guidance, navigation, and display software.

1 ; 15. NUMBER OF PAGES
Fi Jght Management Systems. iass Cotkpir. |19t Mapagement Ity
Control Display Unit Area Navigation Software) “-’ﬂf§c°°5
Flight Planning Electronic Flight Instrumentation System
17. SECURITY CLASSIFICATION] 18. SECURITY CLASSIFICATION |[19. SECURITY CLASSIFICATION | 20. LIMITATION OF ABSTRACT |
OF REPORT OF THIS PAGE OF ABSTRACT
Unclassified Unclassified Unclassified
NSN' 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z39-18
298-102

